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1 INTRODUCTION

1 Introduction

1.1 Models

There are many de�nition of what a model is, depending on the perspective used. For example, a model can be
understood as a 'standard or example for imitation or comparison' or as a 'person employed to wear clothing ot

pose with a product for purposes of display and advertising '. Nonetheless, in the context of decision modeling,
which is the one in which we are interested, the de�nition of model is:

De�nition 1.1. Amodel is a simpli�ed representation of a system or phenomenon, with any hypotheses

required to describe the system or explain the phenomenon, often mathematically.

Models are useful to enhance our understanding of the world to improve our decision making, and they enable
us to elaborate a scienti�c methodology to solve a problem in a duplicable way and with the aim of reducing
bias in mind.

A model is said to be deterministic if the outcomes are precisely determined through known relationships
among states and events. This kind of models always produce the same output when given the same input. On
the other hand, a model is probabilistic (or stochastic) when all the data that it tries to explain is not known
with certainty.

For example, the Newtonian model for gravity is deterministic, while a prediction model for college acceptance
is probabilistic.

Deterministic models are used in domains such as Multi-Attribute Decision Making or Linear Programming,
among others; while probabilistic models are used in queuing problems, simulations, etc.

We can also classify the data that is used to de�ne a model into qualitative and quantitative. The former
refers to data that is expressed in terms of words, while the latter is data easily expressed using numbers. An
example of qualitative data is the hair color of people in class, and for quantitative data is the height of people
in class.

We can be more precise in our wording, and call the models that we are talking about formal models, which
refer to those models that provide a precise statement of the components of the model and their relationships,
usually by means of mathematical equations. This make them easy to communicate precisely and the ability
to give replicable results. However, being formal does not mean being true. A model can fail to represent the
reality that it tries to describe.

1.2 Decision Theory and Decision Analysis

De�nition 1.2. A decision is a choice that is made about something after thinking about several
possibilities.

Decisions appear in many domains, including Mathematics, Economics, Computer Sciences, Psychology,...

De�nition 1.3. Decision Analysis consists in trying to provide answers to questions raised by actors
involved in a decision process using a model.

B. Roy

In the previous de�nition, a Decision Process refers to a strategy of intervention, such as aid, communication
or justi�cation, among others. There are many ways to provide decision aid and no single way to compare
methods. This, together with the fact that di�erent models may lkead to di�erent recommendations, makes it
hard to assess when a Decision Analysis model is 'good' or, more appropriately, 'suitable'.

Therefore, we cannot compare decision making to solving a well-de�ned problem, as the former is highly de-
pendent on opinions, interests and, more generally, di�erent human factors involved. In every decision process,
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1.3 Main Steps of Developing a Decision Model 1 INTRODUCTION

there are several possible interventions, among which we can �nd imagining compromises, communicating,
coordinating, controlling, motivating or conducting change.

There are many di�erent models used in Decision Analysis nowadays, with the advantages of:

� Providing a clear language that can be leveraged as a communication tool

� Capturing the essence of a situation, acting a structuration tool

� Answering 'what-if ' questions, serving as a exploration tool

On the other hand, their drawbacks are their high complexity and opaqueness. In addition, in many situations
people could argue that such models are not necessary because they already know how to take decisions and
they would over-complicate the process; or would ask for higher-level explanations or ideas that are not suitable
for formalization; or would rather rely on their intuition.

1.3 Main Steps of Developing a Decision Model

1. Formulation: translate the problem scenario into a mathematical model.

This involves the de�nition of the problem and the development of a decision model, i.e., the de�nition of
the variables or measurable quantities that vary, and the parameters or measurable quantities inherent
to the problem.

2. Solution: solve the mathematical expressions from the formulation.

This process involves the development of the solutions by correctly manipulating the model to arrive
at the best solution, and the testing of the solution, to check that it works as expected and meets the
expectations.

3. Interpretation: discover the implications of the results.

This is usually done by conducting sensitivity analysis, i.e., testing the di�erent outcomes obtained
under a variety of states; and implementing results, enacting the solutions and monitoring the perfor-
mance.

The outlined process is very high level, and there are many possible problems that can arise:

� De�ning the problem: we can �nd con�icting viewpoints that impact di�erently the stakeholders.

� Model development: it is not always easy to �nd the formal model that describes the problem at hand,
and it is usual to make adaptations.

� Acquering data: can be hard in some scenarios, as well as checking its validity and correctness.

� Developing a solution: we can �nd many limitations, such as only �nding one answer, �nding approximate
answers, prohibitive computing times,...

� Implementation: it is crucial that the solution is feasible to be implemented, both from a managerial point
of view and from the user perspective.

1.4 Decision's Algorithm & Transparency

Decisions made by algorithms can be opaque because of technical and social reasons, in addition to being made
purposely opaque to protect intellectual property.
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1.4 Decision's Algorithm & Transparency 1 INTRODUCTION

De�nition 1.4. An algorithm is a sequence of instructions, typically used to solve a class of problems
or perform a computation.
It must be:

� Finite: it must eventually solve the problem.

� Well-de�ned: the series of step must be precise and understandable.

� E�ective: it must solve all cases of the problem for which it was de�ned.

Usually, we �nd contradictory objectives when developing an algorithm, because simpler algorithms are usually
time intensive, while algorithms that are very e�cient are very complex are hard to understand.

De�nition 1.5. Algorithmic Transparency is the principle that the factors that in�uence the de-
cisions made by algorithms should be transparent to the people who use, regulate and are a�ected by
systems that employ those algorithms.

This concept is opennes about the purpose, structure and underlying actions of the algorithms used to search
for, process and deliver information. Two important properties of transsparency are:

� Explanability: systems and institutions that use algorithm decision making are encouraged to produce
explanations regarding both the procedures followed by the algorithm and the speci�c decisions that are
made. This is specially relevant in public policy contexts.

� Accountability: institutions should be held responsible for decisions made by the algorithms they use,
even if it is not feasible to explain in detail how the algorithms produce their results.
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2 PREFERENCES AS BINARY RELATIONS

2 Preferences as binary relations

2.1 De�nitions

De�nition 2.1. Given a set X, a binary relation, R, is a subset of ordered pairs of elements in X:

R ⊆ X ×X.

We can write (x, y) ∈ R or, equivalently, xRy.

Relations can be expressed as directed graphs. For instance, a relation R of a set X can be represented as
the graph GR = (NX , ER), where NX are the nodes, representing each element in X and ER are the edges,
representing each pair in R. The edges are constructed in such a way that e = (x, y) ∈ ER ⇐⇒ xRy.

Example 2.1. Let X = {a, b, c, d} and R = {(a, b) , (a, c) , (b, d)}, then we can represent this by GR as:

Another way to represent relations is using matrices. We can construct a matrix MR by

MR = (mxy)(x,y)∈X ,

where

mxy =

{
1 if xRy

0 if not (xRy)
.

Example 2.2. The previous example can be represented with the following matrix:

MR =

a b c d
a
b
c
d


0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 .

Depending on how a relation is constructed, it can possess di�erent properties. Some interesting properties are
de�ned as follows:
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

De�nition 2.2. A binary relation R on a set X is said to be:

� Re�exive if xRx,∀x ∈ X.

� Irre�exive if not (xRx) ,∀x ∈ X.

� Complete if for every x, y ∈ X, we have xRy or yRx (or both).

� Weakly complete if for every x, y ∈ X,x ̸= y, we have xRy or yRx (or both).

� Symmetric if [xRy =⇒ yRx] ,∀x, y ∈ X.

� Asymmetric if [xRy =⇒ not (yRx)] ,∀x, y ∈ X.

� Antisymmetric if [xRy ∧ yRx =⇒ x = y] ,∀x, y ∈ X.

� Transitive if [xRy ∧ yRz =⇒ xRz] ,∀x, y, z ∈ X.

� Negatively transitive if [not (xRy) ∧ not (yRz) =⇒ not (xRz)] ,∀x, y, z ∈ X.

� Semi-transitive if [xRy ∧ yRz =⇒ xRt ∨ tRz] ,∀x, y, z, t ∈ X.

Example 2.3. A semi-transitive relation example.

✓ ✓ ×

In addition, we can de�ne paths and cycles on relations, analogously as how it is done in graph theory:

De�nition 2.3. A path from x ∈ X to y ∈ X exists if there are x1, ..., xn ∈ X such that

x = x1Rx2R . . . Rxn−1Rxn = y.

A path is called a cycle if the it goes from x to x.

For every relation, we can extract two subrelations, as its symmetric part and its asymmetric part:

De�nition 2.4. Given a binary relation R on X, we can de�ne its symmetric part, I, as

xIy ⇐⇒ [xRy ∧ yRx] ,

and its asymmetric part, P , as

xPy ⇐⇒ [xRy ∧ not (yRx)] .

The symmetric part is denoted by I because we can understand this as the all the indiferent pairs of R. In
others words, if we understand a relation as a preference over the elements in X, then xRy would mean x is

at least as convenient as y. Therefore, if we have xRy and yRx, we could think of them as equally convenient,
so the decision between them is indiferent. On the other hand, the asymmetric part is denoted by P , from
preference, following a similar reasoning.

When we have two di�erent relations, R and R′, on the same set, X. We can de�ne their concatenation:
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

De�nition 2.5. Let R and R′ be two relations on X. We de�ne their concatenation as

xR •R′y ⇐⇒ ∃z ∈ X : [xRz ∧ zR′y] .

The following proposition establishes di�erent relationships between the concepts we have seen so far:

Proposition 2.1. Let R be a binary relation on X. Then:

� R transitive =⇒ R •R ⊂ R.

� R asymmetric =⇒ R irre�exive.

� R complete ⇐⇒ R re�exive and weakly complete.

� R asymmetric and negative transitive =⇒ R transitive.

� R complete and transitive =⇒ R negative transitive.

Proof. Let's go one by one:

� By de�nition, we have xR•Ry ⇐⇒ ∃z : xRz∧zRy. Since R is transitive, then it must be xRy. Therefore
R •R ⊂ R.

� If R is not irre�exive, then there exists x ∈ X such that xRx, but this is a symmetric relationship, so R
cannot be assymetric.

� Trivial.

� By reduction ad absurdum, seeking a contradiction, let's assume that R is not transitive. This means
that there exist x, y, z ∈ X such that xRy ∧ yRz but not (xRz). By hypothesis, R is asymmetric, so
xRy =⇒ not (yRx). If we combine these two facts, and use the hypothesis that R is negative transitive,
we �nd that

not (yRx) ∧ not (xRz)
neg trans

=⇒ not (yRz)#

This is a contradiction, because we assumed that yRz. Therefore, R must be transitive.

� By reduction ad absurdum, seeking a contradiction, let's assume that R is not negative transitive. This
means that there exist x, y, z ∈ X such that not (xRy)∧not (yRz), but xRz. By hypothesis, R is complete,
so not (yRz) =⇒ zRy. If we combine the two facts, xRz and zRy, then the transitivity of R gives us
xRy#, which is a contradiction with our assumption, not (xRy). Therefore, R must be negative transitive.

There are some relations that ful�ll several of the properties that we have seen, and that hold special charac-
teristics. For instance:

De�nition 2.6. Di�erent types of relations
An equivalence relation is a relation which is re�exive, symmetric and transitive.
A preorder is a relation which is re�exive and transitive.
A weak order or a complete preorder is a relation which is complete and transitive.
A total order or linear order is a relation which is complete, antisymmetric and transitive.

Example 2.4. The relation R = {(a, a) , (a, c) , (c, a) , (c, c) , (b, b) , (b, d) , (d, b) , (d, d)} is an equivalence relation.
Its graph representation is:

8



2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

The relation R = {(a, a) , (a, c) , (a, d) , (c, c) , (c, d) , (d, d) , (b, b)} is a preorder which is not a complete preorder.
Its graph representation is:

The relation R = {(a, a) , (a, c) , (a, d) , (c, c) , (c, d) , (d, d) , (b, b) , (a, b) , (b, d) , (b, c) , (c, b)} is a complete pre-
order. Its graph representation is:

The relation R = {(a, b) , (a, c) , (a, d) , (b, c) , (b, d) , (c, d)} is a total order. Its graph representation is:
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

Exercise 2.1. Let B be a binary relaiton on a set X = {a, b, c, d, e, f} de�ned by

aBa, aBb, aBc, aBd, aBe, aBf

bBb, bBc, bBd, bBe, bBf

cBc, cBd, cBe, cBf

dBb, dBc, dBd, dBe

eBd, eBe, eBf

fBe, fBf

Give a matrix and a graph representation of B

The matrix form of B is the following:

a b c d e f
a
b
c
d
e
f


1 1 1 1 1 1
0 1 1 1 1 1
0 0 1 1 1 1
0 1 1 1 1 0
0 0 0 1 1 1
0 0 0 0 1 1


And the graph representation:

Is B re�exive? Symmetric? Asymmetric? Transitive? Negative transitive? Semi-transitive?

� Re�exive: Yes, since xBx, ∀x ∈ X.

� Symmetric: No, aBb but not (bBa).

� Asymmetric: No, eBf but fBe.
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

� Transitive: No, dBe and eBf , but not dBf .

� Negative transitive: No, not (fBd) and not (dBf) but fBf .

� Semi-transitive: Yes. Let's do this little by litte.

If we take x = a, then aBt, ∀t, so it will hold. If y = a, then �∃x such that xBa, so it will hold. Same
happens if z = a. Finally, if t = a, then aBz, ∀z ∈ X, so it also holds.

If we eliminate a (since we have seen all cases in which a is involved), we obtain the relation:

b c d e f
b
c
d
e
f


1 1 1 1 1
0 1 1 1 1
1 1 1 1 0
0 0 1 1 1
0 0 0 1 1


Using the same argument, b will work now. When we remove it, we get:

c d e f
c
d
e
f


1 1 1 1
1 1 1 0
0 1 1 1
0 0 1 1


And once again we can use c. When we remove it, we get:

d e f
d
e
f

 1 1 0
1 1 1
0 1 1


Now we can repeat the same with e, and when we remove it we obtain a two-element relation, which is
always semi-transitive.

Exercise 2.2. Let B and B′ be two equivalence relations on a set X:

Prove that B ∩B′ is an equivalence relation, where

x (B ∩B′) y ⇐⇒ [xBy ∧ xB′y] ,∀x, y ∈ X.

We need to see that B ∩B′ is re�exive, symmetric and transitive:

� Re�exive: take x ∈ X, then x (B ∩B′)x ⇐⇒ xBx ∧ xB′x, which holds since B and B′ are re�exive.

� Symmetric: take x, y ∈ X such that x (B ∩B′) y. This means that xBy ∧ xB′y. Since B and B′ are
symmetric, we obtain that yBx ∧ yB′x, and therefore y (B ∩B′)x.

� Transitive: take x, y, z ∈ X such that x (B ∩B′) y ∧ y (B ∩B′) z. This means that xBy, xB′y, yBz and
yB′z. Now, since B and B′ are transitive, we obtain xBz and xB′z, so x (B ∩B′) z.

Is B ∪B′ an equivalence relation, where

x (B ∪B′) y ⇐⇒ [xBy ∨ xB′y] ,∀x, y ∈ X?

Re�exivity and symmetry are preserved, but what about transitivity? It is not... Take X = {a, b, c, d} and the
relations

B = {(a, a) , (a, b) , (a, c) , (b, b) , (b, a) , (b, c) , (c, c) , (c, b) , (c, a) , (d, d)} ,

B′ = {(a, a) , (b, b) , (c, c) , (c, d) , (d, d) , (d, c)} .

Then, they are both equivalence relations, but their union is not. This is shown below:
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

As we can see, in the union, we �nd (a, c) and (c, d), but not (a, d), so it is not transitive.

Could we have the same conclusions if B and B′ are two complete preorders on a set X?

We are been asked if B ∩B′ and B ∪B′ are also complete preorders. The answers to both questions is no.

In the case of the intersection, the transitivity is preserved, following the same argument we did for equivalence
relations, but completeness is not preserved. To see this, take X = {a, b, c, d} and the relations

B : (a, b) ≻ (c, d)

B′ : (c, d) ≻ (a, b) .

Then, the intersection is
B ∩B′ : a ≡ b, c ≡ d,

which is not complete.

As for the union, the opposite happens. Completeness is preserved, because the relations involved are complete.
However, transitivity is not preserved. As a counter example, take the following graph visualization:
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

As we can see, in the union, we �nd (a, b) and (b, c) but not (a, c).

De�nition 2.7. The re�exive closure of a binary relation, R, is

r (R) = R ∪ Eq,

where Eq is the re�exive, relation, i.e., Eq = {(x, x) : x ∈ X}.

Therefore, the re�exive closure of a relation is the relation resulting when adding all needed edges for the initial
relation to be re�exive. As a example, see Figure 1.

A similar concept is that of symmetric closure:

De�nition 2.8. The symmetric closure of a relation R is

s (R) = R ∪Rc,

where Rc is the converse relation, i.e.,
xRcy ⇐⇒ yRx.

In this case, we are adding all needed edges for the relation to be symmetric. Again, see Figure 1 for an example.

Finally, there is the transitive closure:

De�nition 2.9. The transitive closure of a relation R is

t (R) = R ∪R2 ∪R3 · · · =
⋃
i≥1

Ri.

In this case, we add all possible transitive relations by relating all elements with a path between them. Note
that if the set X has size N , then we only need to use N − 1 step at maximum to reach any reachable node.
An example is also shown in Figure 1.
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2.1 De�nitions 2 PREFERENCES AS BINARY RELATIONS

(a) Original relation, R.

(b) Re�exive closure, r (R).

(c) Symmetric closure, s (R).

(d) Transitive closure, s (R).

Figure 1: Closures visualization.

A natural question at this point is if we can get any of our properties by applying some kind of closure, and the
answer in the general case is no. However, there are ways to obtain reasonable solutions.

For instance, consider the problem of extending a partial pre-order to a complete pre-order. In such case, we
need to de�ne how unrelated elements should be related. One way to solve this is by applying what is called
a topological sorting, which creates a complete pre-order that respects all the partial pre-order preferences,
when there are no cycles. More formally:

De�nition 2.10. A Directed Acyclic Graph (DAG) is a directed graph with no cycles, i.e., there
is no x ∈ X such that there is a path from x to itself.

De�nition 2.11. A topological sorting for a DAG is a linear ordering of vertices such that, for every
directed edge, (u, v), vertex u comes before v in the ordering.

There are several ways to perform topological sorting, obtaining di�erent results, and all of them respecting the
initial preferences. As a general algorithm, see Algorithm 1. Note that we are �rst taking those nodes with no
outgoing edges, but we could do it also by taking the nodes with no ingoing edges, in which case the list would
not need to be reversed at the end.

1 input:

2 set X

3 relation R (must be DAG)

4

5 initialize:

6 list L

7

8 execute:

9 while R is not empty:

10 free = {x in X : out_degree(x,R)=0 } # Take all nodes without outgoing edges

11 R = R - edges(free) # Remove edges going into nodes in free from R

12 list.append(free) # Append each node to the list

13

14 list.append(rest of nodes)

15

16 return list.reverse # The order is reversed

Algorithm 1: Topological sorting.
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Example 2.5. Create a topological sorting of the following relation:

Let's follow our pseudocode:

� Input: X = {a, b, c, d, e, f}, R = {aRb, aRd, cRb, cRf, dRe, fRe}

� L = []

� free = {e, b}

� R = R− edges ({e, b}) = {aRd, cRf}

� L = [e, b]

� free = {d, f}

� R = {}

15



2.2 Numerical representation 2 PREFERENCES AS BINARY RELATIONS

� L = [e, b, d, f ]

� Append the rest of nodes: L = [e, b, d, f, a, c].

Therefore, a linear ordering respecting the preferences in the original partial preorder is c ≿ a ≿ f ≿ d ≿ b ≿ e.

2.2 Numerical representation

The idea of the numerical representation is to try to construct a binary relation ≿ on a set X such that there
exists a numerical function f : X → R satisfying the property

x ≿ y ⇐⇒ f (x) ≥ f (y) .

Therefore, we are trying to convey the information given by the relation via a mathematical function. When
doing this, we usually assume ⪰ to be a preorder.

We also usually use the following notation:

� x ≿ y means x is at least as good as y.

� ≻ is the asymmetric part of ≿.

� ∼ is the symmetric part of ≿.

Cantor proved a theorem that answered this problem:

Theorem 2.1. Cantor, 1895

Let X be a countable set and ≿ a binary relation on X. Then:

[∃f : X → R|∀x, y ∈ X,x ≿ y ⇐⇒ f (x) ≥ f (y)]
⇕

≿ is a complete preorder on X.

Proof. [ =⇒ ]

� Completeness: pick x, y ∈ X, then we compute f (x) and f (y). Since R is a linearly ordered set, it is
either f (x) ≥ f (y) or f (y) ≥ f (x). This, by hypothesis means that x ≿ y or y ≿ x.

� Transitivity: pick x, y, z ∈ X with x ≿ y and y ≿ z. Then, f (x) ≥ f (y) and f (y) ≥ f (z). The
transitivity in the real line gives us f (x) ≥ f (z), which by hypothesis means x ≿ z.

Therefore, ≿ is a complete preorder on X.

[ ⇐= ] We assume that ≿ is a complete preorder on X. Since X is countable, we can enumerate its elements,
i.e., we can express

X = {xi : i ∈ K ⊂ N} = {x1, x2, ...} .

Let N (y) = {i ∈ K : y ≿ xi}, i.e., the set of indices of elements put after y.

Now, we de�ne
f : X → R

y 7→ f (y) =
∑

i∈N(y)
1
2i

.

This series is convergent, since
∑

n∈N
1
2n = 2 and we are taking a subset of it. Let's see that x ≿ y ⇐⇒ f (x) ≥

f (y):
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� If x ≿ y, then, the transitivity of the relation ensures that

N (x) ⊇ N (y) ,

therefore, it follows that
f (x) ≥ f (y) ,

simply because we are summing over more elements.

� Conversely, assume that f (x) ≥ f (y) but not x ≿ y. Since ≿ is complete, then it must be y ≿ x, which
combined with not (x ≿ y) gives us that it must be N (y) ⊋ N (x). This means that there are elements in
N (y) which are not in N (x), so f (y) > f (x)# which is a contradiction. Therefore, it must be x ≿ y.

Note that this theorem ensures that such a function can only be found if the relation is a complete preorder,
and therefore all partial preorders that are not complete cannot be assigned such a function. Note also that the
de�ned function is not unique (for instance, add 1 to this function, and it still works).

In addition, the following proposition proves that even if there are in�nite possible such functions, they are all
related:

Proposition 2.2. Let ≿ be a complete preorder on X, representable by a function f : X → R.
Then, the following two properties are equivalent:

1. v : X → R is a function representing ≿.

2. There exists a strictly increasing function φ : f (X) → R such that v = φ ◦ f .

Proof. [2 =⇒ 1] x ≿ y
f represents ≿⇐⇒ f (x) ≥ f (y)

φ strictly increasing⇐⇒ φ (f (x)) ≥ φ (f (y))
definition of g⇐⇒ g (x) ≥

g (y).

[1 =⇒ 2] De�ne φ : f (X) → R as
φ (u) = v (x) : f (x) = u.

We have to see that φ is well-de�ned, strictly increasing and that, indeed, v = φ ◦ f .

� Well-de�ned: For each u ∈ f (X), there exist x ∈ X such that f (x) = u, so {v (x) : f (x) = u} is non-
empty and therefore φ (u) is de�ned.

� Strictly increasing: Take u1, u2 ∈ f (X) with u1 > u2. Then, there exist x1, x2 ∈ X with f (x1) = u1

and f (x2) = u2. This means that x1 ≿ x2 and not x2 ≿ x1, since f (x1) > f (x2). But then, it is
v (x1) > v (x2), and so φ (u1) > φ (u2).

� The equality: Take x ∈ X, then

φ (f (x)) = v (x) |f (x) = f (x) = v (x) .

Remark 2.1. This representation functions are ordinal scales, since the importance does not rely on the
absolute values they provide, but in comparating the values for di�erent elements.
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3 Voting Rules as Group Decision Making Models

The objectives of this section are to study a set of decision problems in which a group has to take a decision
among several alternatives and analyzing a number of properties of electoral systems. For this, we will present
a few elements of the classical social choice theory, for which we will see that several parameters need to be
taken into account. These are the nature of the decision, the size of the group and its nature.

Problem
Study election problems in which a society has to take a decision among several candidates.

When electing a candidate, we assume that the choice of the candidate will a�ect the member of society, and
should therefore take the opinion of all members into account.

The intuition then is that a democratic approach is preferred, through an election system in which a candidate
should be elected through some kind of majority rule.

Of course, this approach has many political considerations, like if the democracy is direct or indirect, how
parties play a role, who can vote, etc.

But there are also technical considerations involved in this problem. For instance, the de�nition of majority
is obvious when there are two candidates: the candidate receiving more than half the votes is preferred to the
other one. However, when there are more than two candidates, there are many ways to extend this simple idea,
which are not equivalent and can lead to di�erent and even unwanted results.

In addition, elections can by of di�erent types:

� Type of ballots admitted: only one candidate; or a ranking of all candidates; or all acceptable candidates;
or grading candidates; etc.

� Method for organizing the election and tallying ballots.

The consequences of all this is that there are many possible types of elections, many of which have been proposed
and even used in practice.

Hypotheses

1. All voters are able to rank the set of all candidates, admitting for ties.

2. Voters are sincere: this means that they don't change their preferences strategically.

3.1 Methods of Voting

3.1.1 Plurality Voting

Plurality: rules

1. One round of voting.

2. Ballots with one name.

3. The most voted candidate wins.

Remark 3.1. Ties are neglected because they are unlikely for large populations. They can be solved in several
ways, for example if one voter has special power (the king or queen); or one candidate receives special treatment
(the older one is elected in case of tie); or even choosing randomly.
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Example 3.1. Consider 3 candidates {a, b, c} and 21 voters, with the following distribution:

10 voters :a ≻ b ≻ c

6 voters :b ≻ c ≻ a

5 voters :c ≻ b ≻ a

In this case, candidate a is elected, according to plurality voting, since it's the most voted one.

Note, however, how a majority of voters (11/21) prefer any of the losing candidates to the elected one.

Remark 3.2. Problems are expected as soon as there are more than 2 candidates. A system based on an idea
of majority, like this, may violate the will of a majority of voters. Also, the sincere hypothesis becomes hard
to believe. For example, c's voters could change their vote for b, making it win the election and improving the
outcome according to their preference.

3.1.2 Plurality with Runo�

Plurality with Runo�: rules

1. Ballots with one name.

2. Two rounds of voting:

(a) First round:

i. The candidate with most votes if elected if he receives more than 50% of votes.

ii. Otherwise, go to the second round.

(b) Second round:

i. Keep the two most voted candidates.

ii. Apply plurality votes to these two.

Example 3.2. Consider 3 candidates {a, b, c} and 21 voters, with the following distribution:

10 voters :a ≻ b ≻ c

6 voters :b ≻ c ≻ a

5 voters :c ≻ b ≻ a

First round: the most voted candidate is a with 10 votes, less than 50%. Therefore, we go to the second round.

Second round: we only consider the two most voted candidates, a and b:

10 voters :a ≻ b

6 voters :b ≻ a

5 voters :b ≻ a

Therefore, in this case b wins with 11 votes.

Example 3.3. Consider 4 candidates {a, b, c, d} and 21 voters, with the following distribution:

10 voters :b ≻ a ≻ c ≻ d

6 voters :c ≻ a ≻ d ≻ b

5 voters :a ≻ d ≻ b ≻ c

In this case, with plurality with runo�. the �rst round is won by b, with 10 votes, which is not enough, and
then the second round is between b and c. b wins with 15 votes in the second round.

However, note that there is a majority of voters (11/21) preferring a and d to b.
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Some takeaways:

� The French system does only a little better than the UK one.

� Preferences used in the previous example are not extremely rare.

Manipulation Manipulation occurs when some voters are not sincere, to improve the result of the election
according to their preferences. Let's see this through an example.

Example 3.4. In the previous example, b was elected. Howeber, suppose that the 6 voters with preferences
c ≻ a ≻ d ≻ b vote as if their preferences were a ≻ c ≻ d ≻ b. Then, a would be elected in the �rst round with
11 votes. Therefore, it is pro�table to the six manipulating voters, for which a ≻ b.

De�nition 3.1. A voting rule is manipulable if it may happen that some voters may have an interest
to vote in a non-sincere way.

We have just seen with the previous example that plurality with runo� is manipulable.

Monotonicity Monotonicity refers to a property of a voting method. It means that if a candidate increments
its valoration for some population, the outcome of the election should not worsen for this candidate.

Example 3.5. Consider 3 candidates {a, b, c} and 17 voters, with the following distribution:

6 voters :a ≻ b ≻ c

5 voters :c ≻ a ≻ b

4 voters :b ≻ c ≻ a

2 voters :b ≻ a ≻ c

In this case, a would be elected in the second round. However, imagine that a now gets more money and can
increase their campaign power. Through this campaign, they manage to change the preferences of the two last
voters, e�ectively changing the distribution to:

8 voters :a ≻ b ≻ c

5 voters :c ≻ a ≻ b

4 voters :b ≻ c ≻ a

Now, c is elected! The good campaign done by a, made him lose.

With this example, we observe that when the voting method is non-monotonic, the possibilities of manipulation
increase.

3.1.3 Condorcet Voting Rule

Condorcet: rules

1. Compare all candidates by pair.

2. Declare that a is socially preferred to b if strictly more voters prefer a to b.

3. Condorcet principle: if one candidate is preferred to all other candidates, this one should be
elected. This is the Condorcet winner.
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4 PREFERENCES AGGREGATION: THE MULTRI-ATTRIBUTE UTILITY THEORY (MAUT)
APPROACH

Remark 3.3. The condorcet winner, if there is one, must be unique.

Plurality rule and plurality with runo� violate Condorcet's principle.

Condorcet's principle does not solve the 'dictature of the majority' di�culty. This is, a majority of the population
only take their objectives into account. Since they are more, they can decide the elections.

A Condorcet winner is not necessarily ranked high by voters.

Example 3.6. Consider 3 candidates {a, b, c} and 21 voters, with the following distribution:

10 voters :a ≻ b ≻ c

6 voters :b ≻ c ≻ a

5 voters :c ≻ b ≻ a

The results according to Condorcet are:

� a is not preferred to b nor c

� b is preferred to a and c

� c is preferred to a but not to b

Therefore, b is the Condorcet winner.

Example 3.7. Consider 4 candidates {a, b, c, d} and 21 voters, with the following distribution:

10 voters :b ≻ a ≻ c ≻ d

6 voters :c ≻ a ≻ d ≻ b

5 voters :a ≻ d ≻ b ≻ c

In this case, a is the Condorcet winner.

Condorcet's Paradox The social strict preference relation may have circuits:

Example 3.8. Consider 3 candidates {a, b, c} and 3 voters, with the following distribution:

1 voter :a ≻ b ≻ c

1 voter :b ≻ c ≻ a

1 voter :c ≻ a ≻ b

In this case, a is preferred to b, b is preferred to c and c is preferred to a.

Therefore, electing the Condorcet winner is an attractive idea, but not always possible or e�ective.

4 Preferences Aggregation: the Multri-Attribute Utility Theory (MAUT)
Approach

4.1 Multi-Criteria Decision Analysis (MCDA)

Think about a situation in which a Decision Maker (DM) is facing a decision problem, i.e., the DM has to
deal with di�erent alternatives and compare them, to take a decision. The alternatives are described by several
attributes.

A criterion is an attribute associated to a preference relation, also called a monotonic attribute.
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4 PREFERENCES AGGREGATION: THE MULTRI-ATTRIBUTE UTILITY THEORY (MAUT)

APPROACH

Criteria cannot be reduced to only one criterion, since they can potentially be in con�ict.

More formally, let X = {x1, ..., xm} be the set of alternatives, that are evaluated on a �nite set of criteria,
N = {1, ..., n}. X can be also written as X = X1×X2× ...×Xn, where Xi ∈ Rm is the vector of all alternatives
evaluated with criterion i.

There exist preferences on the values for each criterion i, by means of an utility funtion, a qualitative preference
relation ≿i, etc.; and a representation of the importance of each criterion or set of criteria, by means of weights,
importance relations, etc.

Now, using the input information, we want to elaborate a decision rule allowing to compare two di�erent
alternatives. That is, given two alternatives, x = (x1, ..., xn) and y = (y1, ..., yn), we want to be able to say
whether x ≿ y or y ≿ x.

Example 4.1. Consider the following students grades:

Math Stats Lang

a 16 13 7
b 16 11 9
c 6 13 7
d 6 11 9

How we can rank these students?

There are many ways to do this, for example, we can assign weights to each course and use the weighted sum
to make the ranking, for example, with wM = 1, wS = 0, wL = 1, the ranking would be: b ≻ a ≻ d ≻ c.

Another way is to use a rule system, such as: Compare Math -> If tied, compare Stats -> If tied, compare
Lang. In this case, the ranking would be a ≻ b ≻ c ≻ d.

MCDA presents several di�culties:

� It is not easy.

� There is no best method for all situations.

� All methods have some structural bias.

There are three main problems treated with MCDA:

� Problem of Choice: choose the best out of a set of alternatives.

� Problem of Ranking: rank a set of alternatives from best to worst.

� Problem of Sorting: sort the alternatives into a set of pre-de�ned categories, which are usually ordered.

4.2 Some Simple Models

4.2.1 Pareto Dominance

De�nition 4.1. Given two alternatives, x and y, evaluated on a set of criteria, N = {1, ..., n}, we say
that x (pareto) dominates y, x ≿ y, if it is considered better on all the criteria:

x ≿ y ⇐⇒ [∀i ∈ N, xi ≿i yi] .

We say that x (pareto) strictly dominates y, x ≻ y, if it is considered strictly better on all the criteria:

x ≻ y ⇐⇒ [∀i ∈ N, xi ≻ yi] .

The pareto front is the set of all non-dominated alternatives, i.e., those that are not dominated by any
other alternative.
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Remark 4.1. The optimal solution is necessarily in the pareto front.

This model is not very interesting, because most alternatives will not be pareto comparable, i.e., one will be
better in some criteria, and the other will be better on di�erent criteria. This means that the pareto front would
usually be very similar to the whole set of alternatives.

4.2.2 Weighted Sum

De�nition 4.2. Given two alternatives, x and y, evaluated on a set of real-valued criteria, N = {1, ..., n},
and a set of weights W = {w1, ..., wn}, we de�ne the following preference relationship:

w ≿ y ⇐⇒
n∑

i=1

wixi ≥
n∑

i=1

wiyi.

4.2.3 Majority Rule

De�nition 4.3. Given two alternatives, x and y, evaluated on a set of criteria, N = {1, ..., n}, we say
that x is preferred to y if it is considered better in a majority of the criteria:

x ≿ y ⇐⇒ |{i ∈ N : xi ≿ yi}| ≥ |{i ∈ N : yi ≿ xi}| .

Example 4.2. Consider the following example:

Speed Robustness Price

A 20 Very Good 600
B 15 Good 500
C 25 Bad 550

We �nd that A ≿ B,B ≿ C and C ≿ A, so we cannot make a decision. This is called the Condorcet Paradox.

All the previous approaches can be grouped into two main kinds:

1. Multi Attribute Utility Theory: a quantitative approach based on 'aggregate, then compare':

x ≿ y ⇐⇒ U (x) ≥ U (y) ,

where U is an utility function.

2. Outranking: a qualitative approach, based on 'compare, then aggregate':

x ≿ y ⇐⇒ |{i ∈ N : xi ≿i yi}| ▷ |{i ∈ N : yi ≿i xi}| .

We are going to focus on MAUT approach.

4.3 Multi Attribute Utility Theory (MAUT)

LetX be a set of alternatives evaluated on a �nite set of criteria, N = {1, ..., n}, as before, X = X1×X2×...×Xn.

Let ≿X be a complete preorder on X, indicating the preferences of the Decision Maker (DM). We assume that
≿X is representable by an overal utility function. That is,

∃F,U : ∀x, y ∈ X,x ≿ y ⇐⇒ F (U (x)) ≥ F (U (y)) ,
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where x, y are alternatives in X, U (x) = (u1 (x1) , ..., un (xn)) with ui : Xi → R is a marginal utility function
and F : Rn → R is an aggregation function.

F is usually characterized by a parameter vector, θ. This is, for example, a weight vector in the case of the
weighted sum.

There are several considerations to take into account:

� How to choose the aggregation function F?

� How to construct the marginal utility functions ui : Xi → R?

� The marginal utility functions ui should have a signi�cation for the DM:

� Ordinal scales: absolute di�erences between values have no importance. They can represents order
and preorders.

� Cardinal scales: di�erences between values may be meaningful.

4.3.1 The Additive Model

In the additive model, the overall utility function can be represented as

F (U (x)) =
n∑

i=1

ui (xi) ,

or, equivalently,

F (U (x)) =

n∑
i=1

wiui (xi) .

This is a simple method that involves a compensation between criteria, i.e., a bad performance on a criterion i
could be compensated by a good performance on another criterion.

In the weighted sum, the weights represents the substitution rate between criteria. For example, consider n = 2
and w1 = b · w2. In this case, the alternatives (0, b) and (1, 0) are indi�erent.

If we have (a, b) ∼ (a− δ, b+ γ), then the gain of γ compensates the loss of δ. Indeed, we have

w1 · a+ w2 · b = w1 · (a− δ) + w2 · (b+ γ)

⇐⇒ w1δ = w2γ

⇐⇒ w1

w2
=

γ

δ
.

Implicitly, this implies that all the criteria could be expressed indirectly in the same unit.

Note that the additive model requires to normalize the criteria. In general, we set, ∀i ∈ N , ui : Xi → [0, 1].

For example, we can use:

ui (xi, X) =
xi

maxy∈X yi
,

or

ui (xi, X) =
xi −miny∈X yi

maxy∈X yi −miny∈X yi
.

The Mutual Preferencial Independence Axiom
The additive model requires to satisfy the Mutual Preferencial Independence Axiom, i.e., the criteria are
independent in the sense of preferences. This is formalized as

∀i ∈ N, ∀zi, ti ∈ Xi,∀x, y ∈ X, (zi, xN−1) ≿ (zi, yN−1) ⇐⇒ (ti, xN−1) ≿ (ti, yN−1) .

This means that an attribute is preferentially independent from all the other attributes if changes in the
rank ordering of preferences of other attributes do not change the preference order of the attribute.
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4.3.2 MAUT in Practice

In practice, we ask the DM some preferencial information ≿X′ on a reference set (or learning set), X ′ ⊂ X.
Then, the parameter vector that represents the overall utility function is constructed so that ≿X is an extension
of ≿X′ , so that the modelobtained in X ′ is automatically extended to X.

4.3.3 The UTilités Additives (UTA) Approach

The UTA method aims at inferring one or more additive value functions from a given ranking on a reference
set AR.

The method uses linear programming techniques to assess these functions so that the reankings obtained through
these functions on AR are consistent with the given one.

The input data of UTA is a set of criteria N , on which a set of alternatives, X, is evaluated; a preorder ≿X′ on
X ′ ⊂ X.

For each element x ∈ X, it is assumed that

U (x) =

n∑
i=1

ui (xi) ,

where ui : Xi → R are marginal utility functions.

Then, for each element x ∈ X ′, we set
V (x) = U (x) + σ (x) ,

where σ (x) is a non-negative real valued function estimating the error of the estimation of the value U (x).

The value σ (x) will be minimized by the linear program. That is:

min
∑
x∈X′

σ (x)

s.t.

V (x) ≥ V (y) + δ if x ≻ y

V (x) ∼ V (y) if x ∼ y

ui

(
xj+1
i

)
− ui

(
xj
i

)
≥ 0 if xj+1

i ≻i x
j
i

σ (x) ≥ 0 ∀x ∈ X ′

If the optimal solution is equal to 0, then ≿X′ is representable by an additive model.

Note that there are many variations of this method. For example, the UTAGMS Approach, which gener-
alizes the UTA approach taking into account all additive value functions compatible with indirect preference
information, while UTA is using only one such function. The marginal value functions are general monotonic
non-decreasing functions, and not just piecewise linear. This method produces two rankings in the set of
alternatives X, such that, for any pair of alternatives x, y ∈ X:

� In the necessary order, x ≿X y ⇐⇒ U (x) ≥ U (y), for all value functions U compatible with ≿X′ .

� In the possible order, x ≿X y ⇐⇒ U (x) ≥ U (y), for at least one value function U compatible with
≿X′ .
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4.4 Final Thoughts

The Multi-Criteria Decision Aid (MCDA) phenomena has three branches:

� Prescriptive approach: help the DM by proposing a solution using a model.

� Descriptive approach: describe the DM preferences using a model.

� Elicitation: obtain the parameters of a decision model that explains the past decisions, in order to help
with future decisions. This can be done in two main ways:

� Explicit elicitation: explain the model to the DM and let the DM choose the parameters of the model.

� Implicit eliciation: present some alternatives to the DM and ask him to compare them. From these,
deduct the parameters of the model by solving an optimization problem.

5 The Outranking Approach

Now, we are going to study the outranking approach, based on the premise 'compare, then aggregate':

x ≿ y ⇐⇒ |{i ∈ N : xi ≿i yi}| ▷ |{i ∈ N : yi ≿i xi}| .

The principle of this approach is to compare alternatives criterion by criterion, and then aggregated the com-
parisons:

x ≿ y ⇐⇒ U (c (x1, x2) , ..., c (xn, yn)) ≥ 0.

The objectives of the approach is to build a relation on the alternatives, called the outranking relation,
and exploit it to solve on the MCDA problems. One of the particularities of outranking methods is that the
relation built on the set X allows three types of comparisons of alternatives, namely: preference, indi�erence

and incomparability.

This approach allows to represents doubts or hesitations of the DM, which may result from phenomena like
uncertainty, con�icts or contradictions.

5.1 Elaboration of the Outranking Relation

Let X be a set of alternatives evaluated on n real-valued criteria, N = {1, ..., n}. Let W = (w1, ..., wn) be a
non-negative weight vector assigned to the di�erent criteria. Without loss of generality, we can suppose that∑n

i=1 wi = 1. Let pi ≥ 0 for i = 1, ..., n be a non-negative preference threshold assigned to each criterion i. If
the value 0 < xi − yi < pi, we assume that this di�erence is not signi�cant. Hence, on this criterion, the two
alternatives should be considered indi�erent.

De�nition 5.1. The partial concordance index is a map ci : X×X → [0, 1] de�ned on each criterion
i ∈ N by

ci (x, y) =

{
1 if xi − yi > pi

0 if xi − yi ≤ pi
.

The concordance index is an aggregation of partial concordance indices ci:

c (x, y) =

n∑
i=1

wi · ci (x, y) .

De�nition 5.2. The outranking relation, Sλ, given the cutting level λ ∈ [0, 1], on X, is a binary
relation de�ned by

xSλy ⇐⇒ c (x, y) ≥ λ.
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Remark 5.1. The concordance indicates whether there are enough reasons to say that x is at least as good as
y. An alternative x ∈ X outranks an alternative y ∈ X if it can be considered 'at least as good' as the latter,
given the values of x and y for the n criteria. However, if there are some criteria in which x is worse than y,
then x may outrank y or not, depending on the relative importance of those criteria and the di�erences in the
evaluations, since pi may allow for ignoring small di�erences.

From Sλ, we can derive three binary relations:

� Strictly better than relation:

xPλy ⇐⇒ [xSλy ∧ not (ySλx)] .

� Indi�erent to relation:
xIλy ⇐⇒ [xSλy ∧ ySλx] .

� Incomparable relation:
xUλy ⇐⇒ [not (xSλy) ∧ not (ySλx)] .

Remark 5.2. Notice that an outranking relation is not necessarily transitive, and that it can be de�ned using
qualitative data as well.

Moreover, we could also use a discordance threshold, which indicates whether there are not enough important
reasons to say that x is worse than y.

5.2 ELECTRE TRI Method

Let us consider r ordered categories, C1, ..., Cr, with C1 being the worst one, and Cr the best one. Each category,
Ck, is modeled by using limiting pro�les, i.e., Ck = [πk, πk+1), where πk+1 ≻ πk and it holds:

∀x ∈ X,xPλπ1, πr+1Pλx.

ELECTRE TRI is MCDA method that uses limiting pro�les to classify the elements in X into the r classes.

De�nition 5.3. Pessimistic version of ELECTRE TRI
For each x ∈ X:

1. Decrease k, from r + 1, until the �rst k such that xSλπk:

k = argmax
k

{k : xSλπk} .

2. Assign alternative x to Ck.

The pessimistic version of ELECTRE TRI assigns an alternative x to the unique class Ck such that x is at least
as good as to its lower limiting pro�le, and not at least as good as its upper limiting pro�le.

De�nition 5.4. Optimistic version of ELECTRE TRI
For each x ∈ X:

1. Increase k, from 1, until the �rst k such that πkPλa:

k = argmin
k

{k : πkPλx} .

2. Assign alternative x to Ck−1.

The optimistic version of ELECTRE TRI assigns an alternative x to the unique class Ck such that its upper
limiting pro�le is better than x and its lower limiting pro�le is not better than x.

Theorem 5.1. If x ∈ X is assigned to the class Ck by the pessimistic version, and to the category Cl

by the optimistic version, then k ≤ l.
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5.3 Majority Rule Sorting (MR-Sort)

MR-Sort is a simpli�ed version of the ELECTRE TRI method. The general principle of MR-Sort is to assign
alternatives by comparing their performances to those to pro�les delimiting the categories. An alternative is
assigned to a category above a pro�le if, and only if, it's at least as good as the pro�le on a weighted majority
of criteria.

That it, x ∈ X is assigned to category Ck if ∑
i:ai≥πk,i

wi ≥ λ

and ∑
i:ai≥πk+1,i

wi < λ.

The MR-Sort method involves r × n+ 1 parameters.

The problem of learning the parameters of MR-Sort model on the basis of assignment examples can be formulated
as a MIP problem, but only instances of modest size can be solved in reasonable computing times.

For instance, a problem involving 1000 alternatives, 10 criteria and 5 categories requires 21000 binary variables.

Learning only the weights and the majority threshold of an MR-Sort model on the basis of assignment examples
can be done using an ordinary linear program, without binary nor integer variables. On the contrary, learning
pro�le evaluations is not possible by linear programming without binary variables.

Example 5.1. Given the following alternatives, criteria and weights:

1 2 3 4

a 5 7 2 5
b 8 4 6 2
c 4 8 7 5
d 6 4 5 7
e 2 6 2 8
f 3 5 6 4

Weights 0.4 0.3 0.1 0.2

Assign them to the categories C1 ≡ Bad, C2 ≡ Medium and C3 ≡ Good, with limiting pro�les:

1 2 3 4

π4 10 10 10 10
π3 6 6 5 5
π2 5 5 3 4
π1 1 1 1 1

With λ = 0.7

� a:
a− π3 : 0 + 0.3 + 0 + 0.2 = 0.5 < 0.7

a− π2 : 0.4 + 0.3 + 0 + 0.2 = 0.9 ≥ 0.7

So a ∈ C2.

� b:
b− π3 : 0.4 + 0 + 0.1 + 0 = 0.5 < 0.7

a− π2 : 0.4 + 0 + 0.1 + 0 = 0.5 < 0.7

So b ∈ C1.
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� c:
c− π3 : 0 + 0.3 + 0.1 + 0.2 = 0.6 < 0.7

c− π2 : 0 + 0.3 + 0.1 + 0.2 = 0.6 < 0.7

So c ∈ C1.

� d:
d− π3 : 0.4 + 0 + 0.1 + 0.2 = 0.7 ≥ 0.7

So d ∈ C3.

� e:
e− π3 : 0 + 0.3 + 0 + 0.2 = 0.5 < 0.7

e− π2 : 0 + 0.3 + 0 + 0.2 = 0.5 < 0.7

So e ∈ C1.

� f :
f − π3 : 0 + 0 + 0.1 + 0 = 0.1 < 0.7

f − π3 : 0 + 0.3 + 0.1 + 0.2 = 0.6 < 0.7

So f ∈ C1.

Therefor, C1 = {b, c, e, f} , C2 = {a} and C3 = {b}.
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6 Sample Exam

Exercise 6.1. Voting Rules

Let us consider the following preferences of n = 17 voters, given on a set X = {a, b, c, d} of m = 4
candidates:

5 voters :c ≻ b ≻ a ≻ d

4 voters :b ≻ a ≻ c ≻ d

4 voters :d ≻ b ≻ c ≻ a

2 voters :a ≻ c ≻ b ≻ d

2 voters :d ≻ b ≻ a ≻ c

Which candidate is elected by using the following voting rules or principles:

1. Plurality voting.

The elected candidate is d, with 6 votes.

2. Plurality runo� voting (plurality with two rounds).

Since the most voted candidate is d with 6 votes, a second round is needed. c and d go to the second
round, it remains:

5 voters :c ≻ d

4 voters :c ≻ d

4 voters :d ≻ c

2 voters :c ≻ d

2 voters :d ≻ c

So the winner is c with 11 votes.

3. Condorcet principle.

We obtain the following Condorcet matrix:

a b c d
a 0 0 1
b 1 1 1
c 1 0 1
d 0 0 0

So, the Condorcet winner is b.

4. Borda principle.

We assign the ranks and compute the Borda scores:

B (a) = 5 · 3 + 4 · 2 + 4 · 4 + 2 · 1 + 2 · 3 = 47

B (b) = 5 · 2 + 4 · 1 + 4 · 2 + 2 · 3 + 2 · 2 = 32

B (c) = 5 · 1 + 4 · 3 + 4 · 3 + 2 · 2 + 2 · 4 = 41

B (d) = 5 · 4 + 4 · 4 + 4 · 1 + 2 · 4 + 2 · 1 = 50

So, the Borda winner is b.

5. Copeland principle. The Copeland principle associates to each candidate, x, a score calcu-
lated as follows:

SCop (x) =
∑

y∈X,y ̸=x

Cop (x, y) ,
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where X is the set of candidates and Cop (x, y) =


1 if a majority of voters prefer x to y

−1 if a majority of voters prefer y to x

0 if the both two previous situations arise simultaneously (tie)

.

The candidate with the highest Copeland score is elected.

SCop (a) = −1− 1 + 1 = −1

SCop (b) = 1 + 1 + 1 = 3

SCop (c) = 1− 1 + 1 = 1

SCop (d) = −1− 1− 1 = −3

So, the Copelan winner is b.

6. Kramer-Simpson principle. The Kramer-Simpson principle associates to each candidate, x,
a score:

KS (x) = min
y∈X,y ̸=x

n (x, y) ,

where X is the set of candidates and n (x, y) is the number of voters who prefer x to y. The
candidate with the highest Kramer-Simpson score is elected.

In the following table, we represent the number of voters that prefer the candidate in the row to the
candidate in the column:

a b c d
a 2 8 11
b 15 10 11
c 9 7 11
d 6 6 6

KS (a) = 2

KS (b) = 10

KS (c) = 7

KS (d) = 6

So, the Kramer-Simpson winner is b.

In general, does the Copeland principle elect the Condorcet winner, if this latter exists? Justify
your answer.

Assume the Condorcet winner exists, say W . Then, for all other candidate, c, we know that W is preferred to
c by a majority of voters. This means that, for all other candidate c, it is

Cop (W, c) = 1,

so
SCop (W ) = n− 1,

where n is the total number of candidates. Note this is the maximum possible Copeland value, so we only have
to check if no other candidate can reach this value.

Indeed, since Cop (W, c) = 1, for all c, then Cop (c,W ) = −1, and so no other candidate c can reach the
maximum score. Therefore, W is also the Copeland winner.

In general, does the Kramer-Simpson principle elect the Condorcet winner, if this latter exists?
Justify your answer.

Assume the Condorcet winner exists, say W . Then, for all other candidate, c, we know that W is preferred to
c by a majority of voters. This means that, for all other candidate c, it is

n (W, c) >
n

2
.

31



6 SAMPLE EXAM

Therefore,

KS (W ) = min
c̸=W

n (W, c) >
n

2
.

On the other hand, it must be

n (c,W ) <
n

2
,

so
KS (c) <

n

2
< KS (W ) .

Therefore, W is also the Kramer-Simpson winner.

Let us consider the followwing preferences of 4 voters given on a set X = {a, b, c, d, e} of 5 candi-
dates:

1 voter :a ≻ b ≻ c ≻ d ≻ e

1 voter :b ≻ c ≻ d ≻ a ≻ e

1 voter :c ≻ d ≻ a ≻ b ≻ e

1 voter :d ≻ a ≻ b ≻ c ≻ e

The Borda principle is chosen to elect the winner of this election.

1. Who is elected?

B (a) = 1 · 1 + 1 · 4 + 1 · 3 + 1 · 2 = 10

B (b) = 1 · 2 + 1 · 1 + 1 · 4 + 1 · 3 = 10

B (c) = 1 · 3 + 1 · 2 + 1 · 1 + 1 · 4 = 10

B (d) = 1 · 4 + 1 · 3 + 1 · 2 + 1 · 1 = 10

B (e) = 1 · 5 + 1 · 5 + 1 · 5 + 1 · 5 = 20

There is a quadruple tie.

2. By adding 3 new voters to the previous 4 ones (and we have now a total of 7 voters), is it
possible to provide the preferences of these new voters such that the candidate e is elected
(the winner is not necessary unique)? Justify your answer.

The minimum score that e can reach is

B′ (e) = B (e) + 3 · 1 = 23,

if it's the �rst choice for the 3 new voters.

From 3 voters, there are a total of 3 · (1 + 2 + 3 + 4 + 5) = 45 votes to allocate. We have allocated 3 of
them to e, so there are 42 points left to allocate. In order for e to be the winner, we need

B′ (e) ≤ B′ (x) ,

for x ∈ {a, b, c, d}. This means that

23 = B′ (e) ≤ B′ (x) = 10 + kx,

which implies that kx ≥ 13, for all x. So ∑
x

kx ≥ 52.

However, we only have 42 points left. Therefore, e cannot be the Borda winner by adding 3 voters.
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3. By adding 4 new voters to the previous one (and we have now a total of 8 voters), is it
possible to provide the preferences of these new voters such that the candidate e is elected
(the winner is not necessary unique)? Justify your answer.

In this case, the minimum score that e can reach is

B′ (e) = B (e) + 4 · 1 = 24.

From 4 voters, there are a total of 4 · (1 + 2 + 3 + 4 + 5) = 60 points to allocate. We have allocated 4 of
them to e, so there are 56 points left to allocate. In order for e to be the winner, we need

B′ (e) ≤ B′ (x) ,

for x ∈ {a, b, c, d}. This means that

24 = B′ (e) ≤ B′ (x) = 10 + kx,

which implies that kx ≥ 14, for all x. So ∑
x

kx ≥ 56,

which is a quantity that we can a�ord. The following 4 voters would make e win (with ties):

1 voter :e ≻ a ≻ b ≻ c ≻ d

1 voter :e ≻ b ≻ a ≻ d ≻ c

1 voter :e ≻ c ≻ d ≻ a ≻ b

1 voter :e ≻ d ≻ c ≻ b ≻ a

Is it possible to add new voters to the previous 4 ones (by keeping the same 4 types of preferences)
such that a is the unique Condorcet winner? Justify your answer.

Yes, we just need to add this voter to the �rst pro�le:

5 voter :a ≻ b ≻ c ≻ d ≻ e

1 voter :b ≻ c ≻ d ≻ a ≻ e

1 voter :c ≻ d ≻ a ≻ b ≻ e

1 voter :d ≻ a ≻ b ≻ c ≻ e

In this case, a would be the unique Borda winner.

Exercise 6.2. Ranking or sorting?

We consider the following six students a, b, c, d, e, f evaluated on three subjects N = {1, 2, 3}. The
scores on each criterion are given in the interval [0, 100]. The strict preference, given by the
Decision Maker (DM), is denoted by ≻, while his indi�erence preference is denoted by ∼. The
performance matrix of the students evaluations is the following:

1: Mathematics 2: Statistics 3: Language

a 85 90 75
b 80 70 70
c 80 65 70
d 85 90 60
e 50 65 75
f 50 70 60

The two parts below are independent and can be solved separately.

Part 1: Ranking
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1. We assume that the DM provides the following preference information: a ≻ b, c ≻ d and
e ≻ f . Are these preferences representable by an additive model? Justify your answer.

Yes, we can take w1 = w2 = 0, w3 = 1 and the identity as marginal utility functions. This way F (a) >
F (b) , F (c) > F (d) and F (e) > F (f).

2. We assume that the DM provides the following preference information: a ≻ b, c ≻ d and
e ∼ f . Are these preferences representable by an additive model? Justify your answer.

It is

F (a) > F (b) ⇐⇒ w1 · u1 (85) + w2 · u2 (90) + w3 · u3 (75) > w1 · u1 (80) + w2 · u2 (70) + w3 · u3 (75)

⇐⇒ w1 (u1 (85)− u1 (80)) + w2 (u2 (90)− u2 (70)) + w3 (u3 (75)− u3 (70)) > 0.

Also,

F (c) > F (d) ⇐⇒ w1 (u1 (80)− u1 (85)) + w2 (u2 (65)− u2 (90)) + w3 (u3 (70)− u3 (60)) > 0.

And,

F (e) = F (f) ⇐⇒ w1 (u1 (50)− u1 (50)) + w2 (u2 (65)− u2 (70)) + w3 (u3 (75)− u3 (60)) = 0

⇐⇒ w2 (u2 (65)− u2 (70)) + w3 (u3 (75)− u3 (60)) = 0.

Now, if we sum (F (a)− F (b)) + (F (c)− F (d)), the quantity must remain positive, i.e.,

w1 (
XXXXu1 (85)−����u1 (80) +����u1 (80)−XXXXu1 (85))+w2 (����u2 (90)− u2 (70) + u2 (65)−����u2 (90))+w3 (u3 (75)−����u3 (70) +����u3 (70)− u3 (60)) > 0,

that is
w2 (u2 (65)− u2 (70)) + w3 (u3 (75)− u3 (60)) > 0.

So we have the same quantity equalling 0, and being greater than 0. This is impossible, and therefore
these preferences cannot be represented as an additive model.

3. Now, we assume that the marginal utility function ui associated to the criterion i, is exactly
the obtained marks, i.e., ui (xi) = xi, where xi is a value on the criterion i.

(a) Determine the ranking ≿1 of the 6 students by using a weighted sum, where the weights
(ECTS) associated to the 3 subjects is the vector (w1 = 6, w2 = 3, w3 = 2), wi being the
weight associated to the criterion i.

Let's compute the scores:

1: Mathematics 2: Statistics 3: Language Score

a 85 90 75 930
b 80 70 70 830
c 80 65 70 815
d 85 90 60 900
e 50 65 75 645
f 50 70 60 630

So the ranking is a ≻ d ≻ b ≻ c ≻ e ≻ f .

(b) Is it possible to represent the following preferences by a weighted sum model?

� d ≻ c and f ≻ e.

� Language is strictly more important than Mathematics.

� There is no weight (of a criterion) equal to 0.

Justify your answer.

The three preferences can be described mathematically as:
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� F (d) > F (c) and F (f) > F (e).

� w3 > w1.

� w1, w2, w3 > 0.

Let's analyze the implications. First

F (d) > F (c) ⇐⇒ 85w1 + 90w2 + 60w3 > 80w1 + 65w2 + 70w3

⇐⇒ 5w1 + 25w2 − 10w3 > 0 ⇐⇒ w1 + 5w2 − 2w3 > 0

F (f) > F (e) ⇐⇒ 50w1 + 70w2 + 60w3 > 50w1 + 65w2 + 75w3

⇐⇒ 5w2 − 15w3 > 0 ⇐⇒ w2 > 3w3.

The �rst restriction is equivalent to
5w2 > 2w3 − w1,

using the second restriction, we obtain that

5w2 > 15w3,

so making
15w3 > 2w3 − w1 ⇐⇒ 13w3 > −w1

works. Since this is always true (w1, w3 ≥ 0), it is enough to ensure the second restriction. Therefore,
choosing (w1, w2, w3) such that w3 > w1 and w2 > 3w3 should work. For example, (w1 = 1, w2 = 7, w3 = 2).
In this case, the scores are:

1: Mathematics 2: Statistics 3: Language Score

a 85 90 75 865
b 80 70 70 710
c 80 65 70 675
d 85 90 60 835
e 50 65 75 655
f 50 70 60 660

So, the ranking is a ≻ d ≻ b ≻ c ≻ f ≻ e and all conditions are met.

Part 2: Sorting

We aim at developing a multi-criteria method assigning the 6 students to some ordered categories.
The envisaged method is baed on the elaboration of an outranking relation, as it is done, for
instance, in MR-Sort method. However, unlike MR-Sort where each alternative is compared to
reference pro�les representing the boundaries of the categories, the outranking relation here is
de�ned on the given set of alternatives.

� In the sequel, we denote by A = {a, b, c, ...} the set of alternatives to assign and N the set of
criteria.

� The outranking relation ≿ means �at least as good as�, with ≻ its asymmetric part and ∼
its symmetric part. The binary relation ≿ is de�ned by

a ≿ b ⇐⇒
∑

i|gi(a)≥gi(b)

wi ≥ λ,

where wi ≥ 0 represents the weight associated to the criterion i
(∑

i∈N wi = 1
)
, gi (a) represents

the value of the alternative a on the criterion i and λ ∈ [0.5, 1] is the majority threshold.

� Two alternatives a and b are said �incomparable� if [not (a ≿ b) ∧ not (b ≿ a)].

� The p ordered categories we consider are denoted C1, C2, ...Cp (C1 and Cp being respectively
the worst and the best category).
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� C (a) represents the category where the alternative a is assigned.

� C (a) ≥ C (b) means that a is assigned to a category greater than the category where b is
assigned.

� C (a) > C (b) means that a is assigned to a category strictly greater than the category
where b is assigned.

Let us consider the following assignment principles:

∀a, b ∈ A,C (a) > C (b) =⇒ a ≿ b,

∀a, b ∈ A, a ≿ b =⇒ C (a) ≥ C (b) .

To assign the 6 students, we consider the following parameters and preferences:

� We have 4 categories C1, C2, C3 and C4.

� The majority threshold is λ = 0.7.

� The weight vector is (w1 = 0.3, w2 = 0.3, w3 = 0.4).

� The student a belongs to the category C4.

� The student f belongs to the category C1.

Determine the assignments of the other students by using these preferences and the adopted
assignment principle.

In the following table, I compute the index
∑

i|gi(a)≥gi(b)
wi:

a b c d e f

a 1 1 1 1 1
b 0 1 0.4 0.6 1
c 0 0.7 0.4 0.6 0.7
d 0.6 0.6 0.6 0.6 1
e 0.4 0.4 0.7 0.4 0.7
f 0 0.3 0.3 0.4 0.6

Therefore, we have
a ≿ b, c, d, e, f

b ≿ c, f

c ≿ b, f

d ≿ f

e ≿ c, f

Since b ≿ c and c ≿ b, we have that C (b) ≥ C (c) and C (c) ≥ C (b), so C (b) = C (c).

Also, we have that e ≿ c, so C (e) ≥ C (c).

The following classi�cation meets all these criteria:

Student

C4 a
C3 e, d
C2 b, c
C1 f
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But the solution is not unique, for example this also works:

Student

C4 a
C3 e
C2 b, c, d
C1 f

Student

C4 a, e
C3 d
C2 b, c
C1 f

And many more. If we enable categories to be empty, there are even more possibilities, like

Student

C4 a
C3

C2 b, c, d, e
C1 f

Student

C4 a
C3 b, c, e, d
C2

C1 f

and so on.

6.1 Another Exam

Exercise 6.3. Ranking or sorting?

We consider 8 students of a Master program, evaluated on 6 subjects (criteria supposed to be
maximized) as follows:

Alternatives CR1 CR2 CR3 CR4 CR5 CR6

a1 10 10 10 10 10 10
a2 9 11 10 11 11 9
a3 11 9 10 11 11 9
a4 10 10 9 9 10 9
a5 9 11 11 10 10 9
a6 11 10 10 11 10 10
a7 10 9 10 11 10 10
a8 11 10 11 12 9 9

The two parts below are independent and can be solved separately.

Part 1: Ranking

1. We assume that each score is given on a scale [0, 20], corresponding to a value of the marginal
utility function associated to a subject.

(a) Determine the ranking ≿1 of the 8 students by using a weighted sum, where weights
(ECTS) associated to the 6 subjects is the vector W1 = (6; 3; 2; 6; 2; 6).

Let's compute the complete scores.

W1 (a1) = 250,W1 (a2) = 249,W1 (a3) = 255,W1 (a4) = 236,

W1 (a5) = 243,W1 (a6) = 262,W1 (a7) = 253,W1 (a8) = 262

So the ranking is
[a6, a8] ≿ a3 ≿ a7 ≿ a1 ≿ a2 ≿ a5 ≿ a4
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(b) Determine the ranking ≿2 of the 8 students by using a weighted sum where the weights
(ECTS) associated to the 6 subjects is the vector W2 = (3; 4; 2; 6; 2; 4). Are the rankings
≿1 and ≿2 di�erent?

W2 (a1) = 210,W2 (a2) = 215,W2 (a3) = 213,W2 (a4) = 198,

W2 (a5) = 209,W2 (a6) = 219,W2 (a7) = 212,W2 (a8) = 221

So the ranking is
a8 ≿ a6 ≿ a2 ≿ a3 ≿ a7 ≿ a1 ≿ a5 ≿ a4.

And both rankings are di�erent.

(c) In fact, the director of the Master has some preferences given as follows:

i. The students a3 and a2 are judged equivalent

ii. The student a2 is strictly preferred to the student a1

Does a weight vector W3 exist such that these preferences are representable by a
weighted sum? Justify your answer and if yes, give the ranking ≿3 obtained by ap-
plying W3 to the student's dataset.

We have W3 (a3) = W3 (a2) and W3 (a2) > W3 (a1). This implies that:

w1 · 11 + w2 · 9 +((((((((
w3 · 10 + w4 · 11 + w5 · 9 + w6 · 11

= w1 · 9 + w2 · 11 +((((((((
w3 · 10 + w4 · 11 + w5 · 11 + w6 · 9

We obtain
2w1 − 2w2 − 2w5 + 2w6 = 0,

or
w1 − w2 − w5 + w6 = 0.

On the other hand

w1 · 9 + w2 · 11 +����w3 · 10 + w4 · 11 + w5 · 11 + w6 · 9
> w1 · 10 + w2 · 10 +����w3 · 10 + w4 · 10 + w5 · 10 + w6 · 10

So
−w1 + w2 + w4 + w5 − w6 > 0.

Now, using the previous equation, we get w4 > 0. It seems like choosing w1 = w2 = w5 = w6 and w4

strictly positive, we get such ranking. Lets use W3 = (1; 1; 1; 1; 1; 1). The scores are

W2 (a1) = 60,W2 (a2) = 61,W2 (a3) = 61,W2 (a4) = 57,

W2 (a5) = 60,W2 (a6) = 62,W2 (a7) = 60,W2 (a8) = 62

So the ranking is
[a6, a8] ≿ [a2, a3] ≿ [a1, a5, a7] ≿ a4.

(d) Prove that the following preferences of the director of the Master are not representable
by a weighted sum:

i. student a1 is strictly preferred to the student a3
ii. student a7 is strictly preferred to the student a1
iii. criterion 6 is more important than criterion 5

In this case, we have W7 (a7) > W4 (a1) > W4 (a3). From the �rst inequality we get

����w1 · 10 + w2 · 9 +����w3 · 10 + w4 · 11 +����w5 · 10 +����w6 · 10
>����w1 · 10 + w2 · 10 +����w3 · 10 + w4 · 10 +����w5 · 10 +����w6 · 10

which is equivalent to
−w2 + w4 > 0.
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On the other hand,

w1 · 10 + w2 · 10 +����w3 · 10 + w4 · 10 + w5 · 10 + w6 · 10
> w1 · 11 + w2 · 9 +����w3 · 10 + w4 · 11 + w5 · 9 + w6 · 11

which equates to
−w1 + w2 − w4 + w5 − w6 > 0.

Since w2 − w4 < 0, it is sure that

−w1 + w2 − w4 + w5 − w6 < −w1 + w5 − w6.

Since w1 ≥ 0, it is sure that

−w1 + w2 − w4 + w5 − w6 < −w1 + w5 − w6 ≤ w5 − w6.

And since w6 > w5, we obtain that

0 < −w1 + w2 − w4 + w5 − w6 < 0

which is a contradiction. Therefore, this preferences are not representable by a weighted sum.

Part 2: Sorting

We aim at developing a multi-criteria method assigning the 8 students to some ordered categories.
The envisaged method is based on the elaboration of an outranking relation, as it is done, for
instance, in MR-Sort method. However, unlike MR-Sort where each alternative is compared to
reference pro�les representing the boundaries of the categories, the outranking relation here is
de�ned on the given set of the alternatives.

In the sequel, we denote by A = {a, b, c, ...} the set of alternatives to assign and N the set of n
criteria.

The outranking relation ≿ means 'at least as good as', with ≻ its asymmetric part and ∼ is
symmetric part.

Two alternatives a and b are �incomparable� if [not (a ≿ b) ∧ not (b ≿ a)].

The p categories we consider are denoted C1, C2, ..., Cp (C1 and Cp being respectively the worst
and the best category).

� C (a) represents the category where the alternative a is assigned.

� C (a) ≥ C (b) means that a is assigned to a category greater than the category where b is
assigned.

� C (a) > C (b) means that a is assigned to a category strictly greater than the category where
b is assigned.

1. Let us consider the following assignment principle:

∀a, b ∈ A,C (a) > C (b) =⇒ a ≿ b.

Prove that, if this principle is used, then two incomparable alternatives are necessarily
assigned to the same category.

Suppose a and b are incomparable. By reductio ad absurdum, suppose they are not assigned to the same
category. Without loss of generality, we may assume C (a) > C (b). However, this implies that a ≿ b. #
This is a contradiction, because a and b are incomparable. The same goes if C (b) > C (a). Therefore, it
must be C (a) = C (b).
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2. Let us consider the following assignment principle:

∀a, b ∈ A, a ≿ b =⇒ C (a) ≥ C (b) .

Prove that this principle implies a ≻ b =⇒ C (a) > C (b) and a ∼ b =⇒ C (a) = C (b).

On one hand:

a ∼ b ⇐⇒ a ≿ b ∧ b ≿ a =⇒ C (a) ≥ C (b) ∧ C (b) ≥ C (a) =⇒ C (a) = C (b) .

The other implication cannot be proved using the given assumptions (I think xD).

3. In this question, we consider the previous assignment principle. We suppose that the out-
ranking relation is de�ned by

a ≿ b ⇐⇒
∑

i|gi(a)≥gi(b)

wi ≥ λ,

where wi ≥ 0 represents the weights associated to the criterion i and
∑

i∈N wi = 1. gi (a)
represents the value of the alternative a on the criterion i and λ ∈ [0.5, 1] is the majority
threshold.

To assign the 8 students of the Master, we consider the following parameters and preferences:

� We have 4 categories C1, C2, C3 and C4

� The majority threshold is λ = 2
3

� The weight vector is W5 = (0.1; 0.2; 0.05; 0.4; 0.05; 0.2)

� The students a2 and a2 belong to the category C3

� The student a1 belongs to the category C2

Determine the assignments of the other students by using these preferences and the adopted
assignment principle.

Let's compute the comparison value for each pair of alternatives:

a1 a2 a3 a4 a5 a6 a7 a8
a1 0.35 0.3 1 0.75 0.5 0.6 0.45
a2 0.7 0.7 0.9 0.95 0.7 0.7 0.45
a3 0.75 0.75 0.75 0.7 0.75 0.95 0.35
a4 0.35 0.3 0.25 0.35 0.25 0.35 0.45
a5 0.7 0.55 0.3 0.9 0.3 0.3 0.5
a6 1 0.75 0.8 1 0.75 1 0.55
a7 0.8 0.75 0.7 0.8 0.75 0.7 0.25
a8 0.75 0.75 0.8 0.95 0.75 0.75 0.75

Therefore
a1 ≿ a4, a5

a2 ≿ a1, a3, a4, a5, a6, a7

a3 ≿ a1, a2, a4, a5, a6, a7

a4 ≿ ∅
a5 ≿ a1, a4

a6 ≿ a1, a2, a3, a4, a5, a7

a7 ≿ a1, a2, a3, a4, a5, a6

a8 ≿ a1, a2, a3, a4, a5, a6, a7

So a1 ∼ a5, a2 ∼ a3 ∼ a5 ∼ a6 ∼ a7, with

a8 ≻ [a2, a3, a5, a6, a7] ≻ [a1, a5]

So the classi�cation must be
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C1

C2 a1, a5
C3 a2, a3, a5, a6, a7
C4 a8
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