
BDMA - Machine Learning
Jose Antonio Lorencio Abril

Fall 2023

Professor: Tom Dupuis

Student e-mail: jose-antonio.lorencio-abril@student-cs.fr

1

Contents Contents

This is a summary of the course Machine Learning taught at the Université Paris Saclay -
CentraleSupélec by Professor Tom Dupuis in the academic year 23/24. Most of the content of this
document is adapted from the course notes by Dupuis, [1], so I won’t be citing it all the time. Other
references will be provided when used.

Contents

I. Deep Learning 6

1. Introduction 6
1.1. AI History . 7

2. Machine Learning Basics 8
2.1. Linear Algebra Basics . 9
2.2. Probability Basics . 10
2.3. Machine Learning Basics . 12

3. Deep Neural Networks 14
3.1. Perceptron . 14
3.2. Multi-layer perceptron . 14
3.3. Cost Functions . 16

3.3.1. Choice of cost function . 16
3.3.2. Cross-entropy . 18

3.4. Why deep NN? . 18
3.5. Gradient-based Learning . 19

3.5.1. Back-propagation . 21

4. Deep Neural Networks: Optimization and Regularization 21
4.1. Optimization . 21

4.1.1. Solving Bad Convergence . 22
4.2. Initialization and Normalization . 26

4.2.1. Random Initialization . 27
4.2.2. Input normalization . 27

4.3. Regularization . 28
4.3.1. L2 Regularization (or Ridge) . 28
4.3.2. L1 regularization (or Lasso) . 28
4.3.3. Early Stopping . 29
4.3.4. Dropout . 29
4.3.5. Data Augmentation . 29

4.4. Vanishing Gradients . 30
4.4.1. Residual network . 30
4.4.2. Stochastic Depth . 31

4.5. Double Descent . 32

5. Convolutional Neural Networks 33
5.1. Introduction . 33

5.1.1. History of CNNs . 34

2

Contents Contents

5.2. Convolutions . 34
5.2.1. Fixed Kernels Weights . 35
5.2.2. Learned Kernel Weights . 36
5.2.3. Receptive fields . 36
5.2.4. 1× 1 Convolution . 36

5.3. Padding, Stride, Pooling . 36
5.3.1. The Sides Problem . 36
5.3.2. Padding . 37
5.3.3. Stride . 37
5.3.4. Pooling . 37

5.4. CNNs . 38
5.4.1. Object Detection Problem . 41
5.4.2. Semantic Segmentation . 44

5.5. Data and Transfer . 45
5.5.1. Data Augmentation . 45
5.5.2. Transfer Learning . 45

5.6. Self-Supervised Learning (SSL) . 46

6. Recurrent Neural Networks 47
6.1. Introduction . 47
6.2. Recurrent Neural Networks . 48

6.2.1. Direct Propagation . 49
6.2.2. Recurrent Neural Networks with output recurrence 49
6.2.3. Recurrent Neural Networks with unique output 49
6.2.4. More architectures . 49
6.2.5. Bi-Directional Recurrent Neural Network . 50
6.2.6. Deep Recurrent Neural Network . 50

6.3. Recurrent Neural Networks Training . 51
6.4. Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU) 51

6.4.1. LSTM . 52
6.4.2. GRU . 53

7. Deep Generative Modelling 53
7.1. Variational Auto-Encoders (VAE) . 54

7.1.1. Auto-Encoders . 54
7.1.2. Variational Auto-Encodersi . 55

7.2. Generative Adversarial Networks . 57
7.3. Other Approaches . 58

7.3.1. Normalizing Flows . 58
7.3.2. Pixel RNN . 58

8. Denoising Diffusion Models 58

9. Transformers 60
9.1. Attention . 61
9.2. Architecture . 61
9.3. The first big takeover: Language Modeling . 67
9.4. The second big takeover: Computer Vision . 67
9.5. The third big takeover: speech . 68
9.6. The fourth big takeover: Reinforcement Learning . 68

3

Contents Contents

9.7. The Transformer’s unification of communities . 68
9.8. A note on efficient transformers . 68

II. Reinforcement Learning 70

10.Introduction 70

11.Definition and components 71
11.1. Maximising the value by taking actions . 72
11.2. Markov Decision Processes . 72
11.3. Policies . 73
11.4. Value Functions . 73

11.4.1. Value Function Approximations . 74
11.5. Model . 74
11.6. Agent categories . 75
11.7. Subproblems of RL . 75

12.Markov Decision Processes 76
12.1. Solving Reinforcement Learning Problems with Bellman Equations 79
12.2. Dynamic Programming . 82

12.2.1. Policy Evaluation . 82
12.2.2. Policy Improvement . 84

12.3. Extensions to Dynamic Programming . 85
12.3.1. Asynchronous Dynamic Programming . 85

13.Model-Free Prediction 86
13.1. Monte Carlo Algorithms . 86

13.1.1. Monte Carlo Policy Evaluation . 87
13.1.2. First-Visit Monte Carlo Policy Evaluation . 87
13.1.3. Every-Visit Monte Carlo Policy Evaluation . 87
13.1.4. Incremental Monte Carlo Policy Evaluation . 88

13.2. Temporal Difference Learning . 88
13.2.1. Temporal Difference Learning by Sampling Bellman Equations 88

13.3. Comparing MC and TD . 89
13.4. Batch Monte Carlo and Temporal Difference . 90
13.5. Multi-Step Temporal Difference . 91

14.Model-Free Control 91
14.1. Monte-Carlo Control . 92

14.1.1. Greedy in the Limit with Infinite Exploration (GLIE) 93
14.2. Temporal-Difference Learning for Control . 94
14.3. Off-Policy Temporal-Difference and Q-Learning . 94
14.4. Overestimation in Q-Learning . 95
14.5. Importance of Sampling Corrections . 96

15.Value approximation & Deep Reinforcement Learning 97
15.1. Approximate Model-Free Prediction . 97
15.2. Deep Reinforcement Learning . 97

15.2.1. Experience Replay . 99

4

Contents Contents

15.3. Deep Learning aware Reinforcement Learning . 99
15.3.1. The Deadly Triad . 100
15.3.2. Deep Double Q-Learning . 100
15.3.3. Prioritized Replay . 101
15.3.4. Multi-Step Control . 101

15.4. Reinforcement Learning Aware Deep Learning . 101
15.4.1. Architectures . 101
15.4.2. Capacity . 103
15.4.3. Generalisation . 103

5

1 INTRODUCTION

Part I.
Deep Learning
1. Introduction

Artificial Intelligence is a wide concept, encompassing different aspects and fields. We can under-
stand the term AI as the multidisciplinary field of study that aims at recreating human intelligence
using artificial means. This is a bit abstract, and, in fact, there is no single definition for what this
means. Intelligence is not fully understood, and thus it is hard to assess whether an artificial invention
has achieved intelligence, further than intuitively thinking so.

For instance, AI involves a whole variety of fields:

• Perception

• Knowledge

• Cognitive System

• Planning

• Robotics

• Machine Learning (Neural Networks)

• Natural Language Processing

Leveraging all of these, people try to recreate or even surpass human performance in different tasks.
For example, a computer program that can play chess better than any human could ever possibly
play, such as Stockfish, or a system that is able to understand our messages and reply, based on the
knowledge that it has learnt in the past, such as ChatGPT and similar tools. Other examples are
self-driving cars, auto-controlled robots, etc.

Therefore, AI is a very wide term, which merges many different scientific fields. Machine Learning,
on the other side, is a narrower term, which deals with the study of the techniques that we can use
to make a computer learn to perform some task. It takes concepts from Statistics, Optimization
Theory, Computer Science, Algorithms, etc. A relevant subclass of Machine Learning, which has
come to be one of the most prominent fields of research in the recent years, is Neural Networks
or Deep Learning, which consists on an ML technique based on the human brain. Many amazing
use cases that we see everywhere, like Siri (Apple assistant), Cortana (Windows assistant), Amazon
recommender system, Dall-E (OpenAI image generation system), etc. Not only this, but the trend is
growing, and the interest in DL is continuously increasing.

This is partly also due to the increase in computing resources, and the continuous optimization that
different techniques are constantly experiencing. For instance, for a model trained on one trillion data
points, in 2021 the training process required around 16500x less compute than a model trained in
2012.

But not everything is sweet and roses when using DL. Since these systems are being involved in
decision making processes, there are some questions that arise, like whose responsibility is it when a
model fails? Moreover, data is needed to train the models, so it is relevant to address how datasets
should be collected, and to respect the privacy of the people that produce data. In addition, the recent
technologies that are able to generate new content and to modify real content, make it a new issue
that AI can create false information, mistrust, and even violence or paranoia.

6

1.1 AI History 1 INTRODUCTION

Nonetheless, let’s not focus on the negative, there are lots of nice applications of DL, and it is a key
component to deal with data, achieving higher performance than traditional ML techniques for huge
amount of data.

1.1. AI History

In 1950, Alan turing aimed to answer the question ’Can machines think?’ through a test, which came
to be named the Turing Test, and consists in a 3 players game. First, a similar game is the following:
2 talkers, a man and a female, and 1 interrogator. The interrogator asks questions to the talkers, with
the aim of determining who is the man and who is the female. The man tries to trick the interrogator,
while the woman tries to help him to identify her.

Then, the Turing Test consists in replacing the man by an artificial machine. Turing thought that a
machine that could trick a human interrogator, should be considered intelligent.

Later, in 1956, in the Dartmouth Workshop organized by IBM, the term Artificial Intelligence was
first used to describe every aspect of learning or any other feature of intelligence can be so precisely
described that a machine can be made to simulate it.

From this year on, there was a focus on researching about Symbolic AI, specially in three areas of
research:

• Reasoning as search: a different set of actions leads to a certain goal, so we can try to find the
best choice of action to obtain the best possible outcome.

• Natural Language: different tools were developed, following grammar and language rules.

• Micro world: small block based worlds, that the system can identify and move.

In 1958, the Perceptron was conceived, giving birth to what is called the connectionism, an approach
to AI based on the human brain, and a big hype that encouraged funding to support AI research. At
this era, scientists experience a bit of lack of perspective, thinking that the power of AI was much
higher than it was. For instance, H. A. Simon stated in 1965 that ’machines will be capable, within
twenty years, of doing any work a man can do.’ We can relate to our time, with the huge hype that
AI is experiencing, as well as the many apocaliptic theories that some people are making. Maybe we
are again overestimating the power of AI.

The time from 1974 to 1980 is seen as the first winter of AI, in which research was slowed down and
funding was reduced. This was due to several problems found at the time:

• There were few computational resources.

• The models at the time were not scalable.

• The Moravec’s paradox: it is comparatively easy to make computers exhibit adult level perfor-
mance on intelligence test or playing checkers, and difficult or impossible to give them the skills
of a one-year-old when it comes to perception and mobility.

• Marvin Minsky made some devastating critics to connectionism, compared to symbolic, rule-
based models:

– Limited capacity: Minsky showed that single-layer perceptrons (a simple kind of neural
network) could not solve certain classes of problems, like the XOR problem. While it was
later shown that multi-layer perceptrons could solve these problems, Minsky’s work resulted
in a shift away from neural networks for a time.

7

2 MACHINE LEARNING BASICS

– Lack of clear symbols: Minsky believed that human cognition operates at a higher level
with symbols and structures (like frames and scripts), rather than just distributed patterns
of activation. He often argued that connectionist models lacked a clear way to represent
these symbolic structures.

– Generalization and Abstraction: Minsky was concerned that connectionist models struggled
with generalizing beyond specific training examples or abstracting high-level concepts from
raw data.

– Inefficiency: Minsky pointed out that many problems which seemed simple for symbolic
models could be extremely computationally intensive for connectionist models.

– Lack of explanation: Connectionist models, especially when they become complex, can be
seen as "black boxes", making it difficult to interpret how they arrive at specific conclusions.

– Over-reliance on learning: Minsky believed that not all knowledge comes from learning from
scratch, and some of it might be innate or structured in advance. He felt connectionism
put too much emphasis on learning from raw data.

In 1980, there was a boom in expert knowledge systems that made AI recover interest. An expert
system solves specific tasks following an ensemble of rules based on knowledge facilitated by experts.
A remarkable use case was the XCON sorting system, developed for the Digital Equipment Corpora-
tion, which helped them save 40M$ per year. In addition, connectionism also came again on scene,
thanks to the development of backpropagation applied to neurons, by Geoffrey Hinton. All these
achievement made funding to come back to the field.

Nonetheless, there came a second winter of AI, from 1987 to 1994, mainly because several companies
were disappointed and AI was seen as a technology that couldn’t solve wide varieties of tasks. The
funding was withdrawn from the field and a lot AI companies went bankrupt.

Luckily, from 1995 there started a new return of AI in the industry. The Moore’s Law states that
speed and memory of computer doubles every two years, and so computing power and memory was
rapidly increasing, making the use of AI systems more feasible each year. During this time, many new
concepts were introduced, such as intelligent agents as systems that perceive their environment and
take actions which maximize their chances of success; or different probabilistic reasoning tools such
as Bayesian networks, hidden Markov models, information theory, SVM,... In addition, AI researchers
started to reframe their work in terms of mathematics, computer science, physics, etc., making the
field more attractive for funding. A remarkable milestone during this time was the victory of Deep
Blue against Garry Kasparov.

The last era of AI comes from 2011 to today, with the advent and popularization of Deep Learning
(DL), which are deep graph processing layers mimicking human neurons interactions. This happened
thanks to the advances of hardware technologies, that have enabled the enormous computing require-
ments needed for DL. The huge hype comes from the spectacular results shown by this kind of systems
in a huge variety of tasks, such as computer vision, natural language processing, anomaly detection,...

In summary, we can see how the history of AI has been a succession of hype and dissapointment cycles,
with many actors involved and the industry as a very important part of the process.

2. Machine Learning Basics

In this section, we review some notation, and basic knowledge of Linear Algebra, Probability and
Machine Learning.

8

2.1 Linear Algebra Basics 2 MACHINE LEARNING BASICS

2.1. Linear Algebra Basics

A scalar is a number, either real and usually denoted x ∈ R, or natural and denoted n ∈ N. A vector
is an array of numbers, usually real, x ∈ Rn, or

x =

x1
x2
...

xn

 .

A matrix is a 2-dimensional array of numbers, A ∈ Rn×m, or

A =

 A11 . . . A1n
...

Am1 . . . Amn

 .

A tensor is an n-dimensional array of numbers, for example A ∈ Rm×k×p is a 3-dimensional tensor.
Usually, we will be working with matrices, which can be operated in different ways:

• Transposition: AT is the transposed of A, defined as
(
AT
)

ij
= Aj,i.

• Multiplication: Let A ∈ Rm×k, B ∈ Rk×n, their multiplication, C ∈ Rm×n is defined as

C = A ·B = AB = (Cij)i≤m,j≤n =
(∑

k

AikBkj

)
i≤m,j≤n

.

Note that the following holds for every matrix A, B:

(AB)T = BT AT .

• Point-wise operations: if we have two matrices of the same size, A, B ∈ Rm×n, we can use apply
scalar operator point-wise to each pair of elements in the same position in the two matrices. For
example, the sum or the substraction of matrices.

There are also special matrices:
• Identity matrix: the identity matrix is a square matrix that preserves any vector it is multiplied

with. For vectors of size n, the identity matrix In verifies

Inx = x,∀x ∈ Rn.

• Inverse matrix: the inverse of a square matrix, A ∈ Rn×n, when it exists, is defined as the only
matrix A−1 such that

A−1A = AA−1 = In.

Another important concept is that of the norm, which is basically measuring how far a point is from
the origin of the space and can be used to measure distances:

Definition 2.1. A norm is a function f that measures the size of vectors, and must have the
following properties:

• f (x) = 0 ⇐⇒ x = 0,

• f (x + y) ≤ f (x) + f (y) , and

• ∀α ∈ R, f (αx) = |α| f (x) .

9

2.2 Probability Basics 2 MACHINE LEARNING BASICS

A very important family of norms is the Lp norm, defined as

∥x∥p =
(∑

i

|xi|p
) 1

p

.

The Euclidean norm is the L2 norm, noted ∥x∥ and equivalent to computing
√

xT x. In Machine
Learning, it is not uncommon to find the use of the squared Euclidean norm, since it maintains the
ordinals and is easier to operate with. The Manhattan norm is the L1 norm, and it is used when
the difference between zero and nonzero elements is important. Finally, the Max norm is the L∞,
or ∥x∥∞ = maxi |xi|.

2.2. Probability Basics

A random variable, X, is a variable that can take different values, x, randomly. They can be
discrete, like the number drawn from a dice, or continuous, like the humidity in the air.

A probability distribution, p, is a Probability Mass Function (PMF) for discrete variables, and a
Probability Density Function (PDF) for continuous random variables. It must satisfy:

• The domain of p describe all possible states of X.

• ∀x ∈ X, p (x) ≥ 0.

•
∫

x∈X p (x) dx = 1.

It is usual to have two (or more) random variables, X and Y , and to be interested in the probability
distribution of their combination, p (x, y). In this context, we define the marginal probability of
the variable X as

p (X = x) =
∫

y∈Y
p (x, y) dy,∀x ∈ X.

The conditional probability of the variable Y conditioned to X = x is

p (Y = y|X = x) = p (Y = y, X = x)
P (X = x) .

Finally, there is the chain rule of conditional probabilities, in which we start with n random
variables, X1, ..., Xn, and it follows:

p (X1 = x1, ..., Xn = xn) = p (X1 = x1)
n∏

i=2
p (Xi = xi|X1 = x1, ..., Xi−1 = xi−1) .

Example 2.1. For example, let’s say X = {1, 2, 3}, Y = {1, 2} and Z = {1, 2} with the following
probabilities:

10

2.2 Probability Basics 2 MACHINE LEARNING BASICS

X Y Z p (x, y, z)
1 1 1 1

6
1 1 2 1

6
1 2 1 1

12
1 2 2 1

24
2 1 1 1

24
2 1 2 1

20
2 2 1 1

20
2 2 2 1

20
3 1 1 1

6
3 1 2 1

12
3 2 1 1

20
3 2 2 1

20

Then, the marginal probabilities for the variable X are

P (X = 1) = 1
6 + 1

6 + 1
12 + 1

24 = 11
24 ,

P (X = 2) = 1
24 + 1

20 + 1
20 + 1

20 = 23
120 ,

P (X = 3) = 1
6 + 1

12 + 1
20 + 1

20 = 21
60 = 7

20 .

The conditional probability for the event {Y = 1|X = 3} is:

P (Y = 1|X = 3) = P (Y = 1, X = 3)
P (X = 3) =

1
6 + 1

12
7
20

=
1
4
7
20

= 5
7 .

The conditional probability for the event {Z = 1|X = 3, Y = 1} is:

P (Z = 1|X = 3, Y = 1) = P (X = 3, Y = 1, Z = 1)
P (X = 3, Y = 1) =

1
6
1
4

= 2
3 .

The probability of the event {X = 3, Y = 1, Z = 1} could be computed from the conditional proba-
bilities as follows, in case we only knew these:

P (X = 3, Y = 1, Z = 1) =P (X = 3) · P (Y = 1|X = 3) · P (Z = 1|X = 3, Y = 1)

= 7
20 ·

5
7 ·

2
3 = 10

60 = 1
6 .

When there are several variables, it is possible that the value of one of them is dependant, somehow,
on the values that the other variables take; or that it is not:

Definition 2.2. Two random variables X and Y are independant, denoted X ⊥ Y , if ∀x ∈
X, y ∈ Y, p (X = x, Y = y) = p (X = x) · p (Y = y) .
X and Y are conditionally independent given the random variable Z, written X ⊥Z Y if
∀x ∈ X, y ∈ Y, z ∈ Z,

p (X = x, Y = y|Z = z) = p (X = x|Z = z) · p (Y = y|Z = z) .

11

2.3 Machine Learning Basics 2 MACHINE LEARNING BASICS

In Statistics and Machine Learning, there are some measures that summarize information about
random variables, and that hold great importance.

Definition 2.3. The expectation of a function f (x) where x ∼ p (x) is the average value of
f over x:

Ex∼p [f (x)] =
∫

x∈X
p (x) f (x) dx.

The variance of f (x) measures how the values of f varies from its average:

V ar [f (x)] = E
[
(f (x)− E [f (x)])2

]
,

and the standard deviation is the square root of the variance.
The covariance of two random variables provides informaiton about how much two values are
linearly related. More generally, if we apply two functions f (x) , where x ∼ p (x), and g (y),
where y ∼ p (y), the covariance between them is:

Cov [f (x) , g (y)] = E [(f (x)− E [f (x)]) (g (y)− E [g (y)])] .

2.3. Machine Learning Basics

To finalize with this review chapter, we are going to remember some basic concepts of Machine
Learning.
First, let’s give a definition of the concept:

Definition 2.4. A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as measured by
P , improves with experience E.

• The task T can be classification, regression, translation, generation, anomaly detection,...
• The performance measure P is specific to the tasks involved, and can be accuracy for clas-

sification, for example. It is measured on a test set.
• The experience E is divided into two main categories:

– Supervised learning: a dataset of points associated with a label or a target determines
the expected outcome of each event.

– Unsupervised learning: a dataset of points without labels or targets, in which the
desirable outcome needs to be define in some different way.

Mathematically, we can formalize this as having a dataset of m points and k features, which can be
represented as a matrix X ∈ Rm×k. In the case of supervised learning, X is associated with a vector
of labels, y, and we aim to learn a joint distribution, p (X, y) to infer

p (Y = y|X = x) = p (x, y)∑
y′ p (x, y′) .

The goal is then to find a function f̂ that associates each x to the best approximation of y, and that
is capable of generalizing to unseen data. Usually, f̂ is parameterized by a set of parameters, θ, which
are learnt during training.

12

2.3 Machine Learning Basics 2 MACHINE LEARNING BASICS

Figure 1: Appropriate capacity, overfitting and underfitting visualization.

The main challenge of an ML model is generalization to unseen data estimated on test data after the
training on training data. Overfitting occurs when the gap between training error and test error is
too large, while underfitting occurs when the training error is too large. The capacity of a model is
the range of functions that it is able to leanr and control how likely the model can overfit or underfit.
This is visualized in Figure Figure 1.
When we want to train a model, we will define the parameters that characterize it, and then we need
to obtain the best possible of the parameters, according to the data. For this, we use estimators:

Definition 2.5. Given an unknown parameter θ, we estimate it through an estimator, θ̂. A
point estimator is a function of the data, X,

θ̂ = g (X) .

The bias of an estimator is
bias

(
θ̂
)

= E
[
θ̂
]
− θ.

An estimator is unbiased if bias
(
θ̂
)

= 0.
The variance of an estimator is V ar

(
θ̂
)
.

There are different ways to construct estimators, but one that is frequently used and that has
solid mathematical foundations is the maximum likelihood estimator. Consider a dataset X =
{x1, ..., xn} and p (x; θ) a parametric family of probability distribution that maps for each x the prob-
ability pdata (x). This is, for each θ, p (x; θ) is a probability density function. The maximum likelihood
estimator is then

θML = arg max
θ

pmodel (X; θ)

= arg max
θ

n∏
i=1

pmodel (xi; θ) ,

considering that all instances of data are independent and identically distributed (iid). It is also a
common practice to use the maximum log-likelihood instead, removing the product and avoiding
floating point issues, since when the dataset is large, the product will rapidly go to 0. In addition, the
logarithm does not modify the ordinals of the function. Therefore, we can use:

θML = arg max
θ

n∑
i=1

log (pmodel (xi; θ)) .

13

3 DEEP NEURAL NETWORKS

3. Deep Neural Networks

3.1. Perceptron

A deeper explanation of the perceptron can be read in my notes from another course, https://
lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf.
A perceptron is an algorithm for supervised learning of binary classifiers. That is, we have a dataset
X ∈ Rn×m associated with a vector of labels y ∈ {0, 1}n. Then, the perceptron learns a function f̂
parametrized by a vector of weights w ∈ Rm and a bias b, such that:

f̂ (x) =
{

1 if w · x + b > 0
0 ∼

.

Therefore, it is a linear classifier, which divides the input space into two regions separated by a
hyperplane. This means that a perceptron cannot separate non-linear data.

3.2. Multi-layer perceptron

A deeper explanation of the MLP can be read in my notes from another course, https://lorenc1o.
github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf.
When we say ’Deep’ neural network, we refer to a series of stacked perceptrons. However, just like this,
the model is still linear. This is why activation functions are introduced. An activation function is
a function that is applied to the output of a perceptron, to make it non linear.
For example, ReLU is a piecewise-linear function defined as

ReLU (z) =
{

z if z ≥ 0
0 ∼

= max {z, 0} .

This function preserves much of the good oprimization properties of a linear function, i.e., it is differ-
entiable (apart from one point), and its derivative is constant.

Example 3.1. Learn the XOR function with a 2-layer MLP.
The XOR function is represented with the table:

x1 x2 y

0 0 0
0 1 1
1 0 1
1 1 0

We want to use a 2-layer MLP to learn this function:

14

https://lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf
https://lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf
https://lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf
https://lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf

3.2 Multi-layer perceptron 3 DEEP NEURAL NETWORKS

In h1, it will be
w11x1 + w12x2 + b1,

and in h2
w11x1 + w12x2 + b1.

This can be represented as
h = W T

h X + bh.

Then, we apply ReLU
max

(
0, W T

h X + bh

)
,

and finally the output layer
y = W T

y max
(
0, W T

h X + bh

)
+ by.

Let’s see the different inputs:

x1 x2 h y

0 0
(

w11 w12
w21 w22

)(
0
0

)
+
(

b1
b2

)
=
(

b1
b2

) (
wy

1 wy
2

)(max (0, b1)
max (0, b2)

)
+ by ≤ 0

0 1
(

w12 + b1
w22 + b2

) (
wy

1 wy
2

)(max (0, w12 + b1)
max (0, w22 + b2)

)
+ by > 0

1 0
(

w11 + b1
w21 + b2

) (
wy

1 wy
2

)(max (0, w11 + b1)
max (0, w21 + b2)

)
+ by > 0

1 1
(

w11 + w12 + b1
w21 + w22 + b2

) (
wy

1 wy
2

)(max (0, w11 + w12 + b1)
max (0, w21 + w22 + b2)

)
+ by ≤ 0

A solution is:
Wh =

(
1 1
1 1

)
, bh =

(
0
−1

)
, Wy =

(
1
−2

)
, b = 0.

Let’s check:

x1 x2 h y

0 0
(

0
−1

) (
1 −2

)(0
0

)
= 0 ≤ 0

0 1
(

1
1− 1

) (
1 −2

)(1
0

)
= 1 > 0

1 0
(

1
1− 1

) (
1 −2

)(1
0

)
= 1 > 0

1 1
(

1 + 1
1 + 1− 1

) (
1 −2

)(2
1

)
= 0 ≤ 0

So, it works! Note that this solution is not unique!

What happens is actually that the solution for the XOR problem is not linearly separable:

15

3.3 Cost Functions 3 DEEP NEURAL NETWORKS

But, the hidden layer transforms this space, making the problem linearly separable, and therefore
solvable in the last layer:

3.3. Cost Functions

The cost function is important when working with neural networks, because our goal is to ultimately
train the model to solve some problem, and the cost functions will be the function that our model will
aim at minimizing, thus guiding the training process.

Usually, we will need to choose a cost function L that is suitable for our problem. Then, we will
minimize L with stochastic gradient descent, by:

• Training on a training dataset.

• Estimating error on an evaluation dataset.

• Computing the gradients using backpropagation.

In this process, we will aim to find good local minima, instead of global minimum. This is related to
overfitting (learning only the training data, losing generalization capabilities), and to the empirical
fact that deep neural network have surprisingly good local and non-global optima.

3.3.1. Choice of cost function

In the general case, we use the maximum likelihood principle, taking the output types of the network
into account. This means that we assume our dataset {x1, ..., xn} to be independently and identically
distributed (i.i.d.) from an unknown distribution, pdata (x). We choose a parametric model family
pmodel (x; θ) represented as a neural network, which we use to estimate an approximation of the true
distribution. For this, we utilize the maximum likelihood estimator, defined as

θML = arg max
θ

n∏
i=1

pmodel (xi; θ) .

16

3.3 Cost Functions 3 DEEP NEURAL NETWORKS

Usually, to avoid floating point errors, the log-likelihood is used instead:

θML = arg max
θ

n∑
i=1

log pmodel (xi; θ) .

In the maximum likelihood estimation framework, we might apply activation functions to the output
layer to get a desired structure for our distribution. This choice will also influence the mathemat-
ical form of the cost function. For example, we can use linear units for regression or for Gaussian
distributions, sigmoid units for binary classification or softmax units for multi-class classification.

Linear units for regression A linear output layer is such that, given the features h, the output is

ŷ = W T h + b,

where W is the weights vector and b the bias.

We can use this to predict real or vector valued variables, such as prices, biometrics,...

Linear unit for Gaussian distribution A Gaussian output unit is such that, given features h, a
linear layer produces a vector ŷ representing the mean and the covariance matrix of a conditional
Gaussian distribution:

p (y|x) = N (y; ŷ, I) .

Covariance is usually not modelled or simplified to be diagonal (in which case we need to ensure that
the output is non-negative).

Binary classification In this case, the objective is to predict a binary variable, y: the neural network
must predict P (y = 1|x). Thus, we must ensure that the output is a probability, in the interval [0, 1].
For this, we can take

P (y = 1|x) = max
{

0, min
{

1, W T h + b
}}

.

The problem with this approach is that if W T h + b /∈ [0, 1] then the gradient is 0 and the training will
stop. To solve this issue, we can use a sigmoid unit, which is

ŷ = σ
(
W T h + b

)
= 1

1 + e−W T h+b
.

Softmax unit for multi-class classification Now our objective is to classify the input data into one
among N > 2 classes. We want to predict ŷ with ŷiP (y = i|x), subject to ŷi ∈ [0, 1] ,∀i and ∑i yi = 1.

In the output layer we can have N perceptrons, each of them computing zi = log P (y = i|x), i.e., the
logits. With this, we can apply the softmax output unit to all of them, obtaining our vector of
probabilities, as

softmax (z)i = ezi∑
j ezj

.

17

3.4 Why deep NN? 3 DEEP NEURAL NETWORKS

3.3.2. Cross-entropy

In classification problems we want to estimate the probability of different outcomes. Let the estimated
probability of outcome i be pmodel (x = i) with to-be-optimized parameters θ and let the frequency of
outcome i in the training set be p (x = i). Given N conditionally independent samples in the training
set, then the likelihood of the parameters θ of the model pmodel (x = i) on the training set is:

L (θ) =
∏
i∈X

pmodel (x = i)N ·p(x=i) .

Therefore, the log-likelihood, divided by N , is

1
N

log (L (θ)) = 1
N

N ·
∑
i∈X

p (x = i) log pmodel (x = i) =
∑
i∈X

p (x = i) log pmodel (x = i) .

Cross-entropy minimization is frequently used in optimization and rare-event probability estimation.
When comparing a distribution q against a fixed reference distribution p, cross-entropy and KL diver-
gence are identical up to an additive constant (since p is fixed): According to the Gibbs’ inequality, both
take on their minimal values when p = q, which is 0 for KL divergence, and H (p) for cross-entropy.
In the engineering literature, the principle of minimizing KL divergence (Kullback’s "Principle of Min-
imum Discrimination Information") is often called the Principle of Minimum Cross-Entropy (MCE),
or Minxent.

3.4. Why deep NN?

Depth is the longest data path data can take from input to output. For a deep feed forward NN, depth
is the number of hidden layers plus the output layer. State-of-the-art architectures used in practice
have dozens to hundreds of layers.

Theorem 3.1. Universal Approximation Theorem
Let φ () be a nonconstant, bounded, and monotonically increasing continuous function. Let Im0

denote the m0−dimensional unit hypercube, [0, 1]m0. The space of continuous functions on Im0

is denoted by C (Im0).
Then, given any function f ∈ C (Im0) and ε > 0, there exists an integer m1 and sets of real
constants αi, bi and wij ∈ R where i = 1, ..., m1 and j = 1, ..., m0 such that we may define

F (x) =
m1∑
i=1

αi · φ

m0∑
j=1

wij · xj + bi

as an approximate realization of the function f , that is

|F (x)− f (x)| < ε,∀x ∈ Im.

This theorem is very relevant, because it says that for any mapping function f in supervised learning,
there exists a MLP with m1 neurons in the hidden layer which is able to approximate it with a desired
precision.

However, it only proves the existence of a shallow (just one hidden layer) MLP with m1 neurons in
the hidden layer that can approximate the function, but it does not tell how to find this number.

18

3.5 Gradient-based Learning 3 DEEP NEURAL NETWORKS

As a rule of thumb for the generalization error, it is

ε = V Cdim (MLP)
N

,

where V Cdim is the Vapnik-Chervonenkis dimension, a measure of the capacity of a model. It refers
to the largest set of points that the model can shatter. It is not easy to compute, but a rough upper
bound for a FFNN is O (W log W), with W being the total number of weight in the network.

Also, this theorem hints us that having more neurons in the hidden layers will give us better training
error, but worse generalization error: overfitting.

However, for most functions m1 is very high, and becomes quickly computationally intractable: so we
need to go deeper.

Theorem 3.2. No Free Lunch Theorem
Multiple informal formulations:

• For every learning algorithm A and B, there are as many problems where A has a better
generalization error than problems where B has a better one.

• All learning algorithms ahve the same generalization error if we average over all learning
problems.

• There is no universally better learning algorithm.

Depth Property
The number of polygonal regions generated by a MLP with a ReLU function, d inputs, n
neurons per hidden layer and l layers is

O

(n

d

)d(l−1)

nd

 .

This number grows exponentially with depth. This means that adding depth basically allows for more
transformations of the input space.

3.5. Gradient-based Learning

The gradient of a function f : Rn → R, is ∇f : Rn → Rn, defined at the point p = (x1, ..., xn) as

∇f (p) =

∂f
∂x1

(p)
...

∂f
∂xn

(p)

 .

This is, it’s the local derivative or slope of each dimension at a certain point.

Going in the opposite direction of the gradient is a naïve but practical guess of the direction of the
local minimum. This is the base for the gradient descent method.

19

3.5 Gradient-based Learning 3 DEEP NEURAL NETWORKS

Gradient-descent method (Cauchy, 1847)
A parametric function f (θ) can be iteratively minimized by following the opposite direction of
the gradient:

θt+1 = θt − ε∇θf (θ) ,

where ε > 0 is the learning rate.
We stop iterating when the gradient is near to 0.

Notice that this is useless if we have a close form for the gradient! In that case it is easier to just
minimize it. This is useful when this is not the case, which always happens for neural networks.

In addition, there are variations to the method, for example, we can vary ε during training.

Stochastic gradient descent
Given a cost function f (θ), parameters of the network are updated with

θ ← θ − ε∇θf (θ) .

For the negative log-likelihood (MLE), the function is:

f (θ) = 1
m

m∑
i=1

L
(
x(i), y(i), θ

)
,

so the estimated gradient is

∇θf (θ) = 1
m

m∑
i=1
∇θL

(
x(i), y(i), θ

)
.

The problem with this approach is that to take a single step of gradient descent, we must compute the
loss over the whole dataset everytime, making the method not scalable at all. This is called batch
gradient descent.

One solution is to compute the gradient with 1 sample only at each step, which is very noisy and
inefficient, but works. This is the stochastic gradient descent.

In the middle ground, we find the mini-batch gradient descent, which divides the dataset into
subsets, and updates the parameters after processing each of these subsets. A batch is a collection is
a collection of samples used at each iteration for performing SDG in DL. A bigger batch provides a
better gradient estimation, and therefore a faster learning, but also implies more device memory and
slower descent.

Therefore, there is a tradeoff between money and performance at companies. In practice, a batch is
set between 1 to 256 on one GPU.

But there is an even greater problem, the computation of the gradient is computationally very
costly. To go around this problem, back-propagation was invented, as an efficient technique for
gradient computation.

20

4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

3.5.1. Back-propagation

The back-propagation algorithm is based on the chain rule for the derivative of composite functions:
if we have y = g (x) and z = f (y) = f (g (x)) = (f ◦ g) (x), then

df

dx
(x) = f ′ (g (x)) g′ (x) ,

or, abusing notation,
dz

dx
= dz

dy

dy

dx
.

This is generalized to multivariate funtions as follows: let x ∈ Rm, y ∈ Rn, g : Rm → Rn and
f : Rn → R. If z = f (y) = f (g (x)), then

∂z

∂xi
(x) =

∑
j

∂z

∂yj

∂yj

∂xi
,

or,

∇xz =
(

∂y

∂x

)T

∇yz,

where
(

∂y
∂x

)
is the Jacobian of g.

Now, back-propagation is a recursive application of the chain rule, starting from the cost function.
The algorithm works as follows:

1. Forward pass: a feedforward network takes as input x and produces the output ŷ. The
information flows from layer to layer.

2. Cost function: compute the error between expected output and actual output.

3. Back-propagate: evaluate the individual gradient of each parameter and propagates them
backwards to update them. For this, we use the concept of local derivative: the derivative of
connected nodes are computed locally on the edges of the graph. For non-connected nodes, we
multiply the edges connected between the nodes, and we sum over all incoming edges.

If we do this in a forward way, summing over all paths becomes intractable pretty quickly, while when
doing it in a backwards way, it allows to obtain the derivative of the output with respect to every
node directly in one pass. This leads to massive parallelization.

I did a more detailed explanation, with visualizations in my previous notes, https://lorenc1o.
github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf.

4. Deep Neural Networks: Optimization and Regularization

4.1. Optimization

Recall that neural networks learn by optimizing a cost function, J (θ). This optimization is, in practice,
performed by gradient descent, so we must be able to compute ∇θJ (θ). The problem is that this is
computationally very costly. However, we have seen how back-propagation is an efficient gradient
computation technique.

Now, learning is related to what we want to optimize, since we are interested in the performance on
the test set, which is not always possible to ensure. Therefore, what is done is minimizing a cost

21

https://lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf
https://lorenc1o.github.io/BDMA_Notes/universities/UPC/Machine_Learning_summary.pdf

4.1 Optimization 4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

function, J , hoping that it will improve the performance in the test set. But this relationship is
also what makes learning and optimizing two different things! In pure optimization, our objective is
minimizing J , while in learning, the objective is the ability to generalize, or perform well on the test
set. Optimizing J on the training set does not ensure a good generalization, and sometimes worse
results regarding the pure optimization problem in the training set, can yield better results in the
learning problem (think about the overfitting problem).

Therefore, optimization is a crucial part of learning, and gradient-descent is a “cheap” optimization
technique. However, it is not exempt of problems:

• Local minima and saddle points: small gradients can stop or greatly slow down the method.

• Partial estimation of gradients slows down descent, but can be beneficial for generalization. This
refers to computing the gradient in batches, instead of in the full dataset (as we saw).

In addition, there are problems that are specific to the kind of functions that arise when working with
neural networks:

• Bad convergence: due to the existence of many local optima.

• Long training time: the speed of stochastic gradient descent depends on initialization.

• Overfitting: deep neural networks have a lot of free parameters. They can sometimes learn by
heart the whole training set, losing the ability to generalize.

• Vanishing gradients: in the backpropagation scheme, the first layers of the network may not
receive sufficiently large gradients early in training.

There are different techniques to address these problems. Let’s see some of them.

4.1.1. Solving Bad Convergence

It’s important to stabilize and improve the convergence of gradient descent on DNNs, and for this we
need good optimization techniques.

Gradient Clipping Gradient Clipping proposes to clip the gradient norm to a threshold v, so:

1. Compute the gradient, say g.

2. If ∥g∥ > th, then
g ← g · th

∥g∥
,

where th is a threshold to the maximum admissible gradient norm.

This way, we keep the direction of the gradient, while preventing overshooting, i.e., taking too large
steps. Although this introduces a bias in the optimization process, it works well in practice.

A visualization is the following:

22

4.1 Optimization 4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

Here, we can observe how if we don’t clip, the gradient is too large and we miss the minimum at the
right, while clipping enables us to get ther easily.

Gradient with Momentum Momentum represents an acceleration method for stochastic gradient
descent. The idea is to smooth gradient steps with some momentum or inertia, using previous gradient
steps as a “memory” of the direction.

Let’s call the gradient at step t, Gt (θ), then we define the velocity, vt (θ), as

vt (θ) = αvt−1 (θ)− (1− α) Gt (θ) ,

where 0 ≤ α < 1 is a parameter controlling how much of the gradient we use for the parameter update,
usually set as 0.9. If it is set to 0, we obtain the vanilla SGD.

The updates are done as
θt+1 = θt − ηvt (θ) ,

where η is the learning rate.

The momentum approach is shown below, observing a slight speedup.

23

4.1 Optimization 4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

Nesterov Momentum This represents a variant of gradient descent with momentum. It tries to ad-
dress the problem of the momentum approach, which is that is tends to oscillate around the minimum.
Nesterov corrects these oscillations by estimating the gradient after the momentum update as:

vt (θ) = αvt−1 (θ)− (1− α) G
(
θ − αvt−1 (θ)

)
.

We can observe how the oscillations are less prominent. If the function was different and momentum
oscillates around the minimum, Nesterov would help with this.

Dynamic Learning Rate Stochastic gradient descent estimates the gradient with only one sample,
and iterates over the whole dataset, as

θ ← θ − ηG
(
θ; xi, yi

)
.

It is common to use minibatches instead:

θ ← θ − ηG
(
θ; xi0:i0+B, yi0:i0+B

)
= θ − η∇θ

i0+B∑
i=i0

L
(
θ; xi, yi

)
.

The learning rate is very important, and in fact it should decrease during training, as we get closer to
the optimum. Some reasons to make this decrease are:

• True gradients becomes small when θ is close to the minimum.
• With SGD, estimating the gradient with samples introduces noise, and these gradients don’t

necessarily decrease.
• A sufficient condition for convergence of SGD is:

∞∑
k=1

ηk =∞, and
∞∑

k=1
η2

k <∞.

In practice, what we do is apply a linear decay until some point τ , and keep it constant after this
point:

ηk =
(

1− k

τ

)
η0 + k

τ
ητ ,

24

4.1 Optimization 4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

and ητ after τ iterations.

Now, the question is, how to choose η0, ητ and τ? There are several options:

• With trail and error (using train/validation sets).

• It’s better to monitor the loss function during training.

• A practical choice:

– Choose τ so that the whole training dataset is seen around 100 times.

– Choose ητ around 1% of η0.

– η0 comes with experience:

∗ Too big: big variations in loss

∗ Too small: learning is slow, we can get stuck in a plateau

– Recipe:

∗ Try multiple η0 over 100 iterations

∗ Pick η0 slightly higher than the best

Cyclical Learning Rate Optimization difficulties comes more from plateaus than from bad local
optima, and increasing η allows to go across these plateaus. For this, what is done is varying the
learning rate in a cyclical manner, from a minimum bound, ηmin to a maximum bound, ηmax.

Super Convergence with One-Cycle Policy Only once cycle works as:

• Start with a small learning rate to begin convergence.

• Increases and then stabilizes to high value, to cross big plateaus.

• Decreases to a small value, to optimize local minima.

SGD with Adaptive Learning Rates Preconditioning:

θt+1 ← θt − ηtP
−1
t G

(
θt
)

,

where Pt can be defined in different ways. Let’s see AdaGrad and RMSProp.

25

4.2 Initialization and Normalization4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

AdaGrad: parameters with largest partial derivatives should have a rapid decrease.

Pt =

diag

 t∑
j=0

G
(
θt
)

G
(
θt
)T

 1
2

.

More precisely:
gt ← G

(
θt
)

rt ← rt−1 + gt ⊙ gt

θt+1 ← θt − λ
δ+

√
rt
⊙ gt

AdaGrad converges quickly on convex problems. However, keeping all the history with momentum
can be detrimentary, and smoothing the gradient destroys information.

RMSProp: introduces momentum when computing the precondicioner. The idea is to adapt the
learning rate to the curvature of the loss function, putting the brakes on when the function is steep
and accelerating when the loss function is flat.

Pt =

diag

αPt−1 +
t∑

j=0
G
(
θt
)

G
(
θt
)T

 1
2

.

More precisely:

vt (θ) = αvt−1 (θ) + (1− α) G (θ)2

θt+1 = θt − η

ϵ +
√

vt (θ)
G (θ) .

Adam Adam (Adaptative Moment Estimation) builds on RMSProp, but also uses a moving average
of the gradients. It works as:

mt (θ) = β1mt−1 (θ) + (1− β1) G (θ)
vt (θ) = β2vt−1 (θ) + (1− β2) G (θ)2

θt+1 = θt − η
m (θ)

ϵ +
√

v (θ)
.

In practice, Adam is the most used optimizer. However, there are more efficient algorithm, like LARS
(Layerwise Adaptive Rate Scaling) or LAMB (LARS+Adam).

Comparison

• SGD momentum should allow for better solution, but hyperparameters are harder to find.

• Adam is easier to tune.

4.2. Initialization and Normalization

The parameters of a deep learning model need initial values. The assignation of initial values is called
initialization, and can impact the optimization process in several ways:

• A bad initialization can make the training process not to converge.

26

4.2 Initialization and Normalization4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

• It can impact the convergence quality, in terms of speed and the value reached.
• Also, it can impact the generalization error.

Therefore, a difficult question arises: initial parameters can help optimization, but can detriment the
generalization error.

Principle: Break Symmetries
Two identical parameters, connected to the same input, should be initialized differently, to
incentivize different learning.

One option could be to initialize everything to 0, but this is not a good choice, because it disentivizes
learning. Instead, there are different initialization schemes, like random initialization.

4.2.1. Random Initialization

Random initialization uses a probability distribution to initialize the weights. For example, Xavier
initialization uses an uniform distribution as

Wi,j ∼ U

(
−

√
6√

ni + ni+1
,

√
6√

ni + ni+1

)
,

where nj is the number of neurons in layer j = 1, ..., N . The input layer is initialized as

W0,j ∼ N
(

0,

√
2
n1

)
.

4.2.2. Input normalization

Gradient descent is sensitive to strong variations in the input, and, ideally, the surface of the loss
function should ahve a uniform curvature in all directions, similar to a sphere. This can be incentivized
by input normalization, i.e., normalizing all input parameters so that they all lie in a similar value
range.
Moreover, there is the concept of batch normalization, or adaptive reparametrization. This consists
in normalizing the input of each layer of a neural network. It is motivated by the following:

• Deep neural networks are compositions of functions, whose parameters are iteratively updated
during training.

• The updates are done simultaneously to all layers, and unexpected effects can come into play,
since each layer is updated assuming all other layers remain constant.

• Therefore, the updates to other layers can add high order effects that can lead to the problem
of gradient explosion, a situation in which the gradient keeps growing indefinitely.

In this case, the idea is to normalize the distribution of each input feature in each layer, across each
minibatch, to a normal, N (0, 1):

µ← 1
m

m∑
i=1

xi,

σ2 ← 1
m

m∑
i=1

(
xi − µ

)2
,

xi ← xi − µ√
σ2 − ε

.

27

4.3 Regularization4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

Remember that ε is the approximation of the generalization error, ε = V Cdim
N .

4.3. Regularization

The loss function can be small on the training data, but large on the dataset. This is the overfitting
problem, that we have seen before. Deep NN can tend to overfit, since more depth implies more free
parameters, and therefore a higher VC dimension, which can increase ε according the rule of thumb
for its approximation.

A way to go around this is to put constraints on the weights, to reduce the VC dimension. This can
be done through regularization.

4.3.1. L2 Regularization (or Ridge)

L2 regularization keeps the L2 norm of the free patameters, ∥θ∥, as small as possible, during learning.

The intuition is that each neuron will use all its inputs with small weights, instead of specializing on
a small part with high weights.

To accomplish this, we have to minimize two things at the same time: the training loss and a penanlty
term representing the norm of the weights:

J (θ) = ED

[
∥t− y∥2

]
+ λ ∥θ∥2 ,

where λ is the regularization parameter, controlling the strength of the regularization:

• If λ is small, there is only a small regularization, allowing higher weights.

• If λ is high, the weights will be kept very small, but they may not minimize the training loss.

The gradient of this new loss function is

∇θJ (θ) = −2 (t− y)∇θy + 2λθ,

and so the parameter updates become

∆θ = η (t− y)∇θy − ηλθ.

The L2 regularization leads to weights decay: even if there is no output error, the weight will con-
verge to 0, forcing the weights to constatly learn, and disincentivizing the specialization on particular
examples (overfitting), enhancing generalization.

4.3.2. L1 regularization (or Lasso)

In this case, we penalize the absolute value of the weights, instead of their euclidean norm:

J (θ) = ED

[
∥t− y∥2

]
+ λ ∥θ∥1 .

This method leads to very sparse representations, where a lot of neurons may be inactive, and only a
few represent the input.

28

4.3 Regularization4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

4.3.3. Early Stopping

During training, a common behavior is the following:

It’s usual that the training error decreases constantly, while the validation error decreases, and the
increases again. If we manage to find the optimal point in this process, we can stop earlier the training
process, before the validation error gets larger.

This method is equivalent to L2 normalization, both limiting the capacity of the model:

• With Ridge regularization, small slope regions contract the dimension of θ, which decays to 0,
and high slope regions are not regularized because they help descent.

• With early stopping, parameters with high slope are learned before parameters with low slope.

4.3.4. Dropout

Dropout considers all the networks can be formed by removing some units from a network. With this
in mind, the method consists of:

• At each optimization iteration: we apply random binary masks on the units to consider.

The probability of dropout, p, is a hyperparameter. Therefore, what we do at training time is, at
each step, deactivate some neurons, randomly. This incentivizes generalization, since relying on some
neurons specializing a lot for some features of the training data is harder if these neurons are not
always available.

Note that, at inference time, all neurons are always available.

4.3.5. Data Augmentation

The best way to avoid overfitting is collecting more data, but this can be hard, costly, or simply
impossible. A simple trick is data augmentation, which consists in creating new varied data from
the current data by perturbing it, while not chaning the labels associated to it.

For example:

29

4.4 Vanishing Gradients4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

Mixup is a particular case of data augmentation, consisting on creating new training new samples
with labels by interpolation:

x̂ = λxi + (1− λ) xj ,

ŷ = λyi + (1− λ) yj ,

where λ ∼ Beta (α, α), with α ∈ [0.1, 0.4] for classification tasks. This method works for structured
data, and can be used to stabilizing GANs (we will see this later).

4.4. Vanishing Gradients

Contrary to what we could think, adding more layers to a DNN does not necessarily lead to better
performance, both on the training and test set. For instance, see the following graph, where we observe
the performance of a 20 layers NN (left) and a 56 layers NN (right):

We observe how its performance is worse in all senses. The main reason for this is the vanishing
gradient problem. The gradient of the loss function is repeatedly multiplied by a weight matrix W
as it travels backwards in a deep NN, as

∂hk

∂hk−1
= f ′

(
W khk−1 + bk

)
W k.

When the gradient arrives to the first layer, the contribution of the weight matrices is comprised
between W d

min, and W d
max, which are the weight matrix with the highest and lowest norm, and d is

the depth of the network. We find:

• If |Wmax| < 1, then W d
max is very small for high values of d, and the gradient vanishes.

• If |Wmin| > 1, then W d
min is very high for high values of d, and the gradient explodes.

We saw that exploding gradients can be solved by gradient clipping. But vanishing gradients are still
the current limitation of deep NN. The solutions include the utilization of ReLU activaiton functions,
unsupervised pre-training, batch normalization, residual networks, etc.

4.4.1. Residual network

A Residual Neural Network, or ResNet, is an advanced type of neural network that is specifically
designed to help improve the performance of deep learning models.

ResNet introduces the concept of residual learning. Instead of expecting each stack of layers to
directly fit a desired underlying mapping, ResNet layers are designed to fit a residual mapping. The
key component of ResNet is the introduction of "skip connections" or "shortcuts" that bypass one or
more layers. A skip connection in a ResNet allows the gradient to be directly backpropagated to
earlier layers.

30

4.4 Vanishing Gradients4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

These skip connections perform identity mapping, and their outputs are added to the outputs of the
stacked layers. This design helps in training deeper networks by mitigating the vanishing gradient
problem. With residual blocks, the network learns the additive residual function with respect to the
layer inputs, making it easier to optimize and gain accuracy from considerably deeper networks.

4.4.2. Stochastic Depth

Stochastic depth is a training technique for deep neural networks, particularly effective for very deep
networks like ResNets. It was introduced as a solution to the problem of vanishing gradients and long
training times in deep networks.

During training, stochastic depth randomly drops layers in the network. The idea is similar to dropout,
where random neurons are turned off during training to prevent overfitting. In stochastic depth,
however, it’s entire layers that are dropped.

Each training iteration uses a shallower version of the network. The depth of the network varies each
time, as different subsets of layers are randomly deactivated.

Notice how stochastic depth is particularly useful for ResNets, where skip connections (or residual
connections) are a key feature. When a residual block is dropped, the skip connection effectively takes
its place, allowing the signal to still propagate forward.

At test time, all layers are used, but their outputs are scaled appropriately to compensate for the
dropout during training. This ensures that the network can benefit from its full depth during inference.

31

4.5 Double Descent4 DEEP NEURAL NETWORKS: OPTIMIZATION AND REGULARIZATION

4.5. Double Descent

Double descent is a phenomenon observed in the training of machine learning models, particularly in
relation to the model’s complexity and its performance on a given task. This concept challenges the
traditional understanding of the bias-variance tradeoff and has gained attention in the field of machine
learning and statistics.

The double descent curve shows that after the point where the model starts to overfit (as per the
traditional U-shaped bias-variance tradeoff curve), increasing the model complexity even further can
lead to a decrease in the total error again.

It shows the following phases:

• Underparameterized Regime: Where the model has too few parameters and underfits the
data. Here, increasing complexity reduces bias and total error.

• Interpolation Threshold: At this point, the model just starts to fit all the training data
perfectly (including noise), leading to high variance and total error.

• Overparameterized Regime: Beyond this threshold, as complexity continues to increase, the
model enters the second descent where surprisingly, the total error begins to decrease again
despite the model being overparameterized.

The double descent phenomenon is especially noticeable in scenarios with limited training data. With
more data, the peak of the curve (at the interpolation threshold) becomes less pronounced.

Double descent suggests that in some cases, choosing an even more complex model after hitting the
overfitting point can improve performance.

For example, observe this phenomenon in the following graphs:

32

5 CONVOLUTIONAL NEURAL NETWORKS

A similar phenomenon is grokking, which occur when we increase training time. It is remarkable
that shallow models don’t show it, which is a reason to use deep networks!

5. Convolutional Neural Networks

5.1. Introduction

When working with MLP, we find several limitations:

1. Dealing with data with a high number of features. For example, let imagine we are working
with a dataset of images at full HD resolution. The feature size is 1920× 1080× 3 = 6 220 800.
Learning a single layer to reduce the dimension to 1000 requires around 6000K × 1K ∼ 109

parameters, making the training really difficult.

2. Use the knowledge of the input data modality to shape the network. E.g., for images, the
network should be equivariant to translation. This means that a pattern should be detected
independently of where it is located in the image.

Convolutional Neural Networks (CNNs) appear to mitigate these limitations.

Definition 5.1. A CNN is an NN that uses convolutions in place of general matrix multipli-
cation in, at least, one of their layers.

CNNs deal with data arranged according to a grid, which can be temporal date, images, videos, etc.

33

5.2 Convolutions 5 CONVOLUTIONAL NEURAL NETWORKS

5.1.1. History of CNNs

• The first work on CNNs was done in 1998, by LeCun et al.
• Theoretical advances to make DNN converge by Hinton et al. in 2006.
• Access to large datasets such as ImageNet thanks to Deng et al. in 2009.
• Advances in hardware technology to scale learning, with better CPUs and the development of

GPUs.
• Win of the 2012 ImageNet challenge with AlexNet, using CNNs, by Krizhevsky et al. in 2012,

made them famous.

5.2. Convolutions

Definition 5.2. Given two functions, f, g : R→ R, their convolution is defined as

(f ∗ g) (x) =
∫ ∞

−∞
f (z) g (x− z) dz.

For discrete function, it becomes

(f ∗ g) (m, n) =
i,j=∞∑

i,j=−∞
f (i, j) g (m− i, n− j) ,

where in this case f and g are bidimensional.
f is called the input signal.
g is called the kernel, or filter.
f ∗ g, the convolution output, is the feature map.

Remark 5.1. Properties of convolutions:
• Commutativity:

(f ∗ g) (x) = (g ∗ f) (x) .

• Distributivity:
(f ∗ (g + h)) (x) = (f ∗ g) (x) + (f ∗ h) (x) .

• Associativity:
((f ∗ g) ∗ h) (x) = (f ∗ (g ∗ h)) (x) .

Remark 5.2. Observe that convolutions can be understood as taking a moving average of f around
each point x, with weights provided by g. If

∫
gdx = 1, then it would represent a proper moving

average.

In practice, however, CNNs do not really use convolutions, but cross-correlations, which consist
in sliding one signal (or function) over another and measuring the similarity at each position. It’s
a way to track how much one signal resembles another as you shift one of them over time or space.
Their definition is very similar to convolutions, but convolutions invert the kernel function, while
cross-correlations do not:

(f � g) (m, n) =
i,j=∞∑

i,j=−∞
f (m, n) g (m + i, n + i) .

34

5.2 Convolutions 5 CONVOLUTIONAL NEURAL NETWORKS

Figure 2: Convolution of a 3-channel input with a 3-channel kernel.

While MLPs make an interaction between each input neurons and each output neurons, CNNs have
sparse interactions, thanks to the kernels, which have a small number of parameters, significantly
reducing the number of parameters of the network.

Moreover, in MLP there is one weight per connection between the input and the output, while CNNs
apply the same kernel to different parts of the input, also reducing the number of parameters of the
network. This is called the parameter sharing property.

Definition 5.3. A function f is said to be equivariant to a transform g, if for any input x, it
holds

f (g (x)) = g (f (x)) .

Because of paratemer sharing, the CNNs are equivariant to translations. This makes them particulary
useful for some modalities, such as image, for which we aim to detect several objects in the same
manner.

Images, and some other modalities, like videos, are composed of channels. For example, RGB is a
3-channel way to compose images.

Kernels are convoluted with all channels of the input, as visualized in the following figure.

Convolutions are not equivariant to rotation, zoom, etc. And these might be interesting for our model
to be invariant. To make the network invariant to such transformation, we can transform the data with
data augmentations including zooming and rotating, and feeding the network with this transformed
data.

Notice how convolutions can reduce the input size, whenever the kernel is larger than 1 × 1. This is
due to the necessity to fit the whole image.

The output size of the convolution of an input of size nh × nw with a kernel of size kh × kw is

(n− kh + 1)× (nw − kw + 1) .

5.2.1. Fixed Kernels Weights

If we are interested in certain features, and we know how to define a kernel that is good for identifying
these features, we can just do this and applying this kernel.

For example, in the following illustration we observe a kernel that is good at finding vertical edges:

35

5.3 Padding, Stride, Pooling 5 CONVOLUTIONAL NEURAL NETWORKS

5.2.2. Learned Kernel Weights

Learning a CNN backbone using DL is learning the weights of the kernels via backpropagation. The
filters seek to learn the best representation to fit its training objective, via the training loss.

Using different kernels allows to detect various patterns, so usually CNNs contain thousands of kernels
and are grouped in hierarchical layers, to learn from low-level features to high-level features.

To compute various features, such as different detections (horizontal, vertical, diagonal, etc.) we need
several filters. For an input of size C × n1 × n2, where C is the amount of channels, and F filters of
size C ×m1 ×m2, the feature map produced has F channels and is of size

F × (n1 −m1 + 1)× (n2 −m2 + 1) .

5.2.3. Receptive fields

The receptive field is the region of the input space that a particular CNN’s feature is looking at.

5.2.4. 1× 1 Convolution

The 1×1 convolution is a linear combination of all channels for each pixel, allowing to learn to reduce
or increase the number of filters.

In general, if the input is of size Fin ×H ×W and the filter is of size Fout × 1× 1, then

• If Fout < Fin: the dimension is reduced.

• If Fout > Fin: the dimension is increased.

1 × 1 convolutions can replace fully connected layers. For example, in classification, we could do
Fout = Nclasses.

5.3. Padding, Stride, Pooling

5.3.1. The Sides Problem

Convolutions are applied on fixed size patches of the input data, and they can only be shifted until
there are no pixels. This introduces two potential problems:

• The output size is reduced.

• The information in the sides of the image can be lost, because the convolution cannot be applied
there.

36

5.3 Padding, Stride, Pooling 5 CONVOLUTIONAL NEURAL NETWORKS

5.3.2. Padding

Padding is a solution to the edge problem, consisting on adding data at the sides of the image. There
are several strategies, but in general, we just add zeros:

There are several modes of zero padding. For a padding of k pixels:

• Valid: no padding.

• Same: add k−1
2 zeros on each side.

• Full: add k zeros on each side.

The output size of a convolution of a nh × nw sized input, to which we add ph rows and pw columns
of padding, and a kernel of size kh × kw becomes

(nh − kh + ph + 1)× (nw − kw + pw + 1) .

Generally, we want to have ph = kh − 1 and pw = kw − 1, which is achieve by applying same zero
padding.

5.3.3. Stride

As far as we have seen, we slide the kernel across all locations right and down. However, we could
skip some of this locations, effectively reducing the feature map output and the computational cost,
but at the expense of the accuracy of the representations.

If we add sh, sw for the height and width strides, the feature map size is

(nh − kh + ph + 1 + sh)
sh

× (nw − kw + pw + 1 + sw)
sw

.

5.3.4. Pooling

Pooling consists in statistically summarizing a neighbourhood. A pooling layer takes a window of
values and output one value. There are several pooling types:

• Max Pooling: take the maximum value of a window.

• Average pooling: take the eman value of a window.

• L2 norm, weighted average pooling, etc.

For example, the following illustrates the use of a 2x2 max pooling layer:

37

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

Pooling is useful to make our representations invariant to minor translations. For deep layers, minor
modifications can mean great changes in the input image.
Also, it reduces the amount of parameters and computation, and help reducing overfiting.
It sets up a strong prior: invariance to local translation of learned kernels.
It can be degrading for some tasks, where precise locations are required.

5.4. CNNs

LeNet by LeCun et al. in 1998 was designed after 10 uears of working with handwritten bank checks.
It paved the basics of DL:

• Feature extraction by convolution layers.
• Classification by MLP layers.
• Layer of convolution followed by average pooling, and non-linearity, with sigmoid or tanh.
• SGD optimizer to perform backpropagation.

The architecture is the following:

AlexNet by Krizhevsky et al. in 2012 was on of the first DNN, and won the 2012 ImageNet challenge,
causing a new DL area. They extended LeNet to larger images, with wider convolutions, and used
ReLUs and max pooling, combined with dropout.
A very interesting fact they observed was that as the layers were deeper, the receptive field was higher:
The first layers learn basic patterns, while deeper layers learn more complicated shapes.

38

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

Visual Geometry Group (VGG) by Simonyan et al. in 2015 was the first network with blocks.
the blocks consisted in:

• Convolution layer with padding to keep the same resolution.

• Non-linearity.

• Pooling layer to reduce resolution.

The architecture was the following:

The problem was how to maintain enough resolution to have a lot of blocks. The solution was to
introduce more convolutions at low resolution, instead of few convolutions at high resolution.

This increases the number of non-linearities and reduces the number of parameter to achieve an equal
receptive field.

Network in Network (NiN), by Lin et al. in 2013: previous architectures improved by enhacing
the number of convolutions (width) and deepening the network (depth). This presents two problems:

• The last fully connected layers consume large number of parameters.

• It is difficult to add non-linearity without using fully connected layers, that destroy the spatial
structure.

NiN made improvements:

• It used 1× 1 convolutiones to increase the number of non-linearities.

• Also, a global average pool at the end to remove large fully connected layers.

Inception Blocks: Google was facing a problem. They needed fast deployment and inference, but
large convolutions with lots of channels increase inference time. Their solution was to reduce the
number of channels by applying several convolutions in parallel. Instead of choosing a single filter size
for a given layer, Inception blocks apply multiple different-sized filters (e.g., 1x1, 3x3, 5x5 convolutions)
in parallel to the same input feature map. This allows the network to capture information at various
scales.

An inception block looks as follows:

39

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

GoogleNet, by Szegedy et al. in 2015 was based on inception blocks. It used several classifiers
throughout training to enhance discriminative features at first layers, and reduce vanishing gradients.

Residual Blocks: these blocks make use of residual connections, or shortcut connections, which
forward the input to the following layer. That is, if a layer is represented as f (x), the same layer,
when used inside a residual block, would be f (x) + x. This is illustrated below.

Residual blocks make the identity function easier to learn, and reduce vanishing or exploding gradient
problems.

ResNet Blocks: these blocks are a combination of VGG blocks and residual blocks. They use 3× 3
convolutions, with batch normalization to stabilize training and residual connection concatenated to
the result of applying two of these convolutions. The residual connection can be either direct, or by
means of a 1× 1 convolution. This is illustrated below:

Residual Neural Networks (ResNet), by He et al. in 2016, is a network architecture consisting
of blocks of residual blocks. There are different ResNets depending on how many blocks or layer are
used. For example, the following is a ResNet-18, as it has 18 trainable layers (the first 7x7 conv, two
3x3 convs for each internal block, and there are eight of them, and the last fully connected layer):

40

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

ResNet is a widely used backbone until today.
ResNexts: Group convolution, by Xie et al. in 2017. To add more non-linearities in ResNets
we can add more layers, increase the width of convolutions or the number of channels. However,
increasing the number of channels add quadratic complexity (Fin × Fout). Group convolutions is a
technique to reduce the computational complexity while still increasing the network’s width. In group
convolution, the input channels are divided into groups, and a convolution is performed independently
on each group. This means that if you have g groups, each group will have c

g input channels and
b
g filters applied to it, where c is the total number of input channels, and b is the total number of
intermediate channels. Each filter in a group only interacts with the input channels within that group.
The following diagram shows a block of the ResNeXt architecture. The input channels are first split
into g groups. Each group is processed by its own set of 1x1 convolutions (to reduce dimensionality),
followed by 3x3 convolutions (to capture spatial hierarchies). The outputs of these groups are then
concatenated, and a final 1x1 convolution is applied to the concatenated result to produce the final
output channels.

DenseNet, by Huang et al. in 2017. This architecture is based on ResNet blocks, but instead of
adding the input and the result of the convolution, it concatenates both of them plus the results of
each dense blocks on the channel dimension. It makes use of transition layers, which are 1 × 1
convolutions after concatenation, to reduce feature dimension.
Some other architectures address different problems. MobileNets, by Howard et al. in 2017 was
thought to be deployed on mobiles, it separates convolution in two operations; EfficientNet, by Tan et
al. in 2019, uses grid search without computational budget to modify the architecture at best width,
depth or input resolution...
CNNs are being slowly replaced in some cases by Visual Transformers.

5.4.1. Object Detection Problem

The goal of the object detection problem is to find a bounding box that contain an object of interest.
It implies two objectives:

• Regression to shape the box.
• Classification to identify the object.

If we consider this problem as a classification problem, one approach is to test various positions and
scales to propose various anchor boxes. This is scalable only if the classifier is fast enough. However,
CNNs are computationally expensive. A solution is to select only a subset of the boxes, by finding
blobs likely to contain objects without class consideration.

41

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

Region proposal: selective search, by Uijlings et al. in 2013

Selective search is a widely used tool to provide regions of interest in images. The regions are computed
following the pipeline:

1. Ascendant segmentation: The algorithm starts with a fine-grained segmentation of the image,
where many small regions are created based on pixel similarity (color, texture, etc.). This is
often done using a graph-based segmentation method.

2. Fuse regions at different scales: The segmented regions are then hierarchically merged based on
various similarity measures. This process is iterative, with smaller regions combining to form
larger ones. This step is crucial as it operates over multiple scales, allowing the algorithm to be
more robust in detecting objects of different sizes and aspects.

3. Convert regions to potential boxes of interest: The resulting regions from the previous step are
then used to generate bounding boxes, which are the "region proposals." These are the candidate
regions that could contain objects and are subsequently used by an object detection model for
classification.

This process is depicted below:

Intersection over Union (IoU)

For two sets, A and B, the Jaccard index, or Intersection over Union, is the reatio of the intersection
area to their union are

J (A, B) = |A ∩B|
|A ∪B|

.

Label region proposal

Region proposal anchor boxes are associated to ground-truth bounding boxes given their IoU (above
a threshold). The class of an anchor is the same as its associated bounding box. If the anchor box is
not associated to a bounding box, it is labeled as background.

The offsets, relative to the position of central coordinates between anchor box and boundingbox, label
the region.

That is, proposal anchor boxes are labeled with the same label of a ground-truth bounding box if their
IoU is above a given threshold.

R-CNN, by Girshick et al. in 2014

R-CNN takes region proposal as input. It computes features for each of the regions, and the clas-
sification is done using several SVMs. The regression of offsets is done by using a linear regression
model.

42

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

To train R-CNNs, there is a supervised pretraining of a CNN backbone, generally on ImageNet, fol-
lowed by an optional fine-tuning of the backbone, to learn specialised features based on a classification
obkective. The backbone is then fixed.

For each input: crop and wrap proposal regions computed by selective search and compute the features.
Train a binary SVM for each class, and apply linear regression to crrect small offsets between the
prediction and the actual bounding box.

Evaluating detection models

The meaning of true positive, false positive and false negative for the detection problem is not the
same as for regular classification problems. The threshold for True and Falso positive/negatives is
based on the IoU and a given threshold. For example:

Remember, precision = T P
T P +F P and recall = T P

T P +F N .

The average precision is the area ander the prevision-recall curve.

The mean-average precision is the mean of average precision for various IoU threholds.

R-CNNs is slow in testing phase, because there are as many passes in the CNN as the number of region
proposals, which is around 2000. Also, SVM and regression are a bit old school, so this architecture
is not usable for real world applications.

Fast R-CNN, by Girshick in 2015

This modification of R-CNN was proposed to increase its efficiency. It passes thewhole image only once
in the CNN backbone. The CNN is trainable, and not fixed, and the proposed regions are associated
with computed features from the output feature map.

Each region of interest can have a different size, so selective search proposed regions are concatenated
with features from the CNN to form the Region of Interest (RoI) Pooling Layer, which reshape
the features to feed them to fully connected layers. From these features the classes and the offsets are
predicted.

The following table compares R-CNN and Fast R-CNN:

43

5.4 CNNs 5 CONVOLUTIONAL NEURAL NETWORKS

R-CNN Fast R-CNN
Test time per image 47 s 0.32 s

Speedup 1x 146x
Test time per image with selective search 50 s 2 s

Speedup 1x 25x

Faster R-CNN, by Ren et al. in 2017
This new modification replaces selective search by a learned region proposal network. The rest is
similar to Fast R-CNN.
The region proposal network (RPN) is a network learned to propose regions of interest. It slides
a window on the feature size, and, at each location of the window, it makes a prediction for k anchors
(propositions), which are sampled by varying scale and aspect ratio. A small network predicts if there
is an object there, and a small network predicts offsets with the bounding box.
The following table compares the three approaches:

R-CNN Fast R-CNN Faster R-CNN
Test time per image (with proposals) 50 s 2 s 0.2 s

Speedup 1x 25x 250x
mAP (VOC 2007) 66.0 66.9 66.9

You Only Look Once (YOLO), by Redmon et al. in 2016
This model is a single stage detector: one network is used to predict the bounding boxes and the class
probabilities. It is the first real time detector close to Faster R-CNN performance.
Its architecture consists of 24 convolutional layers and input dimension of 448× 448. For each input,
it cuts it in 7× 7 grids of cells. Each cell computes the objectness and anchor boxes, considering the
object at the center of the cell, and enabling the boxes to reach out the cell.
This model has been enhanced multiple times, with YoLo v2, v3, v4, v5,...

5.4.2. Semantic Segmentation

The goal in this case is to find an object class for each pixel. There are several associated problems:
• Semantic segmentation: associate each pixel to a specific class.
• Instance segmentation: associate each pixel to a specific class and identify various instances

from the same class.
• Panoptic segmentation: associate each pixel to once class, and prevent overlapping segments.

These are illustrated below:

Mask R-CNN by He et al. in 2017
Basically, it is Faster R-CNN with a third branch, which outputs the object mask.
It can use various backbones such as ResNet, DenseNet,...

44

5.5 Data and Transfer 5 CONVOLUTIONAL NEURAL NETWORKS

5.5. Data and Transfer

Modern CNNs are made of millions of parameters, requiring a huge amount of data to train them.
For example, ImageNet has 1.2M images for 1k classes, and is being replaced by ImageNet21k, that
has 1B images.

Manually annotating such amount of images is costly in terms of money and time, and therefore there
is the need for techniques to deal with lacking of data: data augmentation and transfer learning.

5.5.1. Data Augmentation

We already saw it! It increases the diversity of data by transforming the source data with invariants

5.5.2. Transfer Learning

Sometimes there is possibility to learn from scratch, by random initialisation, because of lack of data.
In this case, we can make use of an already pre-trained backbone from a source task for the target
task.

• If the target task is similar to the source task, and the size is comparable, transfer learning
works directly; while if the size is inferior, there is a risk of overfitting to the target task after
few epochs.

For small problems, the transfer learning is accomplished by learning a linear classifier with last
layers of a pre-trained backbone.

• If the target task is very different from the the source task, and the problem is small, a linear
classifier from lower level layers can be used; if the problem is large, we can fine-tune the backbone
to the new task.

In all cases, starting from initialized weights is better than nothing.

Fine tuning

Fine tuning consists in training several layers of a pre-trained backbone:

Domain Adaptation

Sometimes, the target task and the source task share the same classes, but the target data has a
different distribution than the source. This is an entire field in ML: how to adapt our features to the
new domain, and have the best possible results.

45

5.6 Self-Supervised Learning (SSL) 5 CONVOLUTIONAL NEURAL NETWORKS

5.6. Self-Supervised Learning (SSL)

We already know supervised learning. It consists on predicting a target associated to an input.

Self-Supervised Learning (SSL) is different. It consists on predicting a part of en input, from the
input. This means the model learns to understand and generate data by teaching itself.

A pretext task is a task designed to teach the model something about the structure of the input
data without using labels. For example, the pretext task might involve predicting the next word in
a sentence, or the color version of a grayscale image. The idea is to construct targets from the data
itself and learn from these artificially created labels.

SSL presents several advantages:

• Reduces the Need for Labeled Data: Labeling is often expensive and time-consuming, and SSL
offers a way to learn useful representations without the need for extensive labeled datasets.

• Better Pre-training: SSL can serve as pre-training for neural networks, allowing them to learn
general features from the data that can then be refined with a smaller amount of labeled data
for a specific task (using transfer learning).

All this is illustrated below:

For images, several pretext tasks have been firstly proposed, like rotation, patch localization, coloriza-
tion, counting,...

For videos, which add the time dimension, we find the same pretext tasks as in images, plus some
others specific to videos, which can be masking frames, shuffling frames,...

Contrastive Learning

Constrastive Learning is a pretext task for SSL. It aligns positively pairs of images, and push away
other images. We find the problem of defining what is a positive pair, which can be solved by using
data augmentation.

The following figure illustrates this concept:

46

6 RECURRENT NEURAL NETWORKS

SimCLR, by Chen et al. in 2020
This model defines a siamese pipeline for contrastive learning. Positive pairs are formed from strong
data augmentation, like color jittering, gaussian blur, grayscale, etc. Both paris go through an encoder
and a projector, which consists on several stacked MLP layers. Then, contrastive loss is applied.

SCE, by Denize et al. in 2021
This model tries to address the problem of how to deal with negatives that share semantic information
with the positive pairs. For example, two different cats share more information than two different
dogs. Pushing negatives with high semantic similarities makes training unstable, and so SCE predicts
positive pairs and estimated relations among instances.
Deep Cluster, by Caron et al. in 2018
Clustering associates several input data to a same pseudo-label, without supervision.
Deep Cluster applies clustering to traing a backbone using several stages:

• Estimate pseudo-labels for each instance with a fixed backbone.
• Train the backbone on this label.
• Repeat the operations until convergence.

6. Recurrent Neural Networks

6.1. Introduction

Recurrent Neural Networks are a family of Neural Network architectures specially designed to deal
with sequential data, such as text in NLP, speech signals in speech2text tasks, temporal data in videos,
or other temporal signals, like ECGs, time series, etc.
Sequential data is data with a temporal component, that usually implies correlation in the temporal
dimension. More precisely, a sequence consists in a set of vectors xt, where t ∈ [1, τ] is a temporal
index.
Note that the temporal index is not necessarily related to time, but to order. For example, text is not
temporal, but words are ordered.
Memory is essential for us to understand and interpret what we perceive. Memory can be understood
as a persistent format of information. MLP don’t have this persistence, each data point is processed
independently of the rest. Therefore, RNNs introduce a way to store information, by adding inner
loops that enables them to preserve information at each time-step.

47

6.2 Recurrent Neural Networks 6 RECURRENT NEURAL NETWORKS

6.2. Recurrent Neural Networks

A Recurrent Neural Network (RNN) is defined with a state, h(t), by recurrence. This state depends
on the current input, x(t), and the previous state, h(t−1):

h(t) = f
(
h(t−1), x(t); θ

)
.

The computational graph can be represented with a loop, or unfolded, making it direct and acyclic,
as:

A RNN is trained to predict the future, given past information, in such a way that h(t) is a summary
of the sequence until the timestep t. This summarization implies information compression, or loss of
information, and the training must keep relevant information for the task.
Going back to the definition of the state, we can then write it alternative as

h(t) = f
(
h(t−1), x(t); θ

)
= g(t)

(
x(t), x(t−1), ..., x(1)

)
,

where g(t) takes the whole sequence as input, of variable length.
On the other hand, using the factorized form, with transition function f , the function is the same
at each timestep, allowing for parameter sharing and generalization.

Theorem 6.1. RNNs are universal approximators.

We measure the performance of a RNN through the cost function L, between the output o and the
ground truth y. Internatlly, we use softmax:

ŷi = eoi∑
j eoj

.

The parameters of a RNN are:
• U : input to hidden layers.
• W : recurrent connections between hidden layers.
• V : hidden layers to output.

That is:

48

6.2 Recurrent Neural Networks 6 RECURRENT NEURAL NETWORKS

6.2.1. Direct Propagation

In the case of discrete variable prediction (like words), o represents log-likelihoods of possible output
values, and the normalize probability is ŷ = softmax (o).

Direct propagation works by:

a(t) = b + Wh(t−1) + Ux(t),

h(t) = ϕ
(
a(t)

)
,

o(t) = c + V h(t),

ŷ(t) = softmax
(
o(t)
)

,

where ϕ is the activation function.

6.2.2. Recurrent Neural Networks with output recurrence

We don’t link directly hidden layers recurrently, but rather we link the output to a hidden layer. This
has the cons of using less information than h(t−1), being therefore a less expressive model, but the
pros of being easier to train, enabling parallelization and efficient backpropagation.

6.2.3. Recurrent Neural Networks with unique output

In this case, it needs the complete input sequence, and the output is a summary of the input. This
kind of setting is usually used a simpler module of a more complex architecture.

6.2.4. More architectures

In this figure we observe different possible setups, which apply to different use cases.

49

6.2 Recurrent Neural Networks 6 RECURRENT NEURAL NETWORKS

For instance:
• Automatic captioning, converting images to text sequences, could be done with a one to many

architecture.
• Sentiment analysis, converting a text sequence to a predicted label, could be done with a many

to one architecture.
• Machine translation, converting text sequence to text sequence, could be done with a many to

many architecture.
• Frame-label video classification, converting a video sequence into a sequence of labels, could also

be done with a many to many architecture.

6.2.5. Bi-Directional Recurrent Neural Network

Sometimes, the future of the sequence can also be helpful, for example in NLP, in Character recognition
and even in Speech recognition. For this, there exist the Bi-Directional RNN (BRNN), which combine
a RNN processing from past to future, with state h, and a RNN processing from future to past, with
state g, and the output combines the two of them.

Moreover, BRNN can be applied to images with 4 direction, applying them up,down and left,right.
This is a bit outdated approach for visual recognition, with architectures as ReNet for classification
and ReSeg for segmentation.

6.2.6. Deep Recurrent Neural Network

A classical RNN has an input layer, U , a hidden layer, W , and an output layer V . However, we can
add hidden layers, allowing to go higher in abstraction.
The representation improves hierarchically:

50

6.3 Recurrent Neural Networks Training 6 RECURRENT NEURAL NETWORKS

• h, the first state, represents temporal dependencies on inputs x.

• z, the second state, represents temporal dependencies on the representations h.

Also, we can add an MLP before every recurrent layer, increasing the representation capacity of the
network, at the expense of a harder training. A possibility to improve these is to use skip connections.

6.3. Recurrent Neural Networks Training

The principle is the same as with MLP and CNNs: we choose a cost function a minimize it during
training using gradient descent with backpropagation.

However, we need to take into account the recurrency of the network, and so we use what is called
Backpropagation through time (BPTT), which consists in applying backpropagation to an un-
rolled graph of the RNN.

The idea is to forward through the entire sequence to compute the loss, and then go backwards through
the entire sequence to compute gradient.

However, this can be very inefficient, so we also find the truncated BPTT, which does BPTT to
chunks of the sequence, instead of the complete sequence. The hidden states are carried forward in
time until the end of the sequence, but we only backpropagation for some smaller number of steps.

6.4. Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU)

Classical RNN present two main limitations:

1. A computation limitation: they are hard to train, and prone to gradient vanishing and explosion.

2. Long term interactions are hard to model.

51

6.4 Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU)6 RECURRENT NEURAL NETWORKS

Some upgraded variants of RNNs are Long Short Term Memory (LSTM) and Gated Recurrent Units
(GRU).

Gradient vanishing and exploding: the reason RNNs are prone to gradient vanishing/exploding
is that the gradient needs to go through the unfolded computational graph. If the largest singular
value of the hidden matrix is greater than 1, a recurrent multiplication by it would tend to increase
the gradient vector, leading to gradient explosion. The opposite happens when the largest singular
value is smaller than 1, leading to gradient vanishing.

The solution to gradient explosion can be using gradient clipping.

The solution to gradient vanishing is to change the RNN architecture.

Long-term dependency problem: RNNs can connect past information to present data, and, in
theory, time distance of information is irrelevant. However, in practice, classical RNNs cannot model
long sequences (more than 20 points).

6.4.1. LSTM

LSTM is based on a standard RNN whose neuron activates with tanh.

Ct is the cell state, which flows through the entire chain and is updated with a sum instead of a
product. This avoids memory vanishing and the gradient explosion and vanish.

Then, there are three gates foverned by sigmoid units, which define the control of in and out informa-
tion.

A key component is the forget gate,

ft = σ (Wf · [ht−1, xt] + bf) ,

which can affect the affect the previous state, letting it through or not (forgetting).

Then, the input gate layer,
it = σ (Wi · [ht−1, xt] + bi) ,

which processes the input, contributing to the cell state.

Then, there is the classical neuron, activated with tanh, which also contributes to the cell state, by

Ĉt = tanh (WC · [ht−1, xt] + bC) .

52

7 DEEP GENERATIVE MODELLING

Finally, to update the cell state it is
Ct = ft · Ct−1 + it · Ĉt.

Notice that the output is computed as
ht = tanh (Ct) + σ (Wo · [ht−1, xt] + bo) .

6.4.2. GRU

GRU is a variant of LSTM, simpler and faster, and with similar performance. It works by applying:
ui = σ (Wu · xi + Uu · hi−1 + bu) ,

ri = σ (Wr · xi + Ur · hi−1 + br) ,

ĥi = tanh (Wh · xi + ri ◦ Uh · hi−1 + bh) ,

hi = ui ◦ ĥi + (1− ui) ◦ hi−1.

Even with these improvements, RNN struggle with long sequences, and remain difficult and slow to
train, because of thei autoregressive nature. In 2017, a Google paper introduced a novel architecture
that changed everything: the Transformer.

7. Deep Generative Modelling

Recall that the objective of supervised learning is to learn a mapping, f , between a data sample, x,
and its label, y:

y = f (x) .

This can be formalized by learning the conditional distribution between labels, given a data point,
that is, p (y|x).
For this task, we need to have access the annotated pairs (x, y). The applications of supervised learning
are classification, object detection, segmentation, etc.
On the other hand, unsupervised learning tries to learn the underlying hidden data structure, formal-
ized by the unconditional distribution data points, p (x).
In this case, we don’t need any annotations to the data. The applications of unsupervised learning
are generative modelling, clustering, feature learning, summarization, etc.
Generative modelling consists in learning a model, M , that can approximate the data distribution,

pM (x) ∼ p (x) ,

and should enable sampling easily. That is, a generative model aims to provide:
• Density estimation: it can evaluate the likelihood of a data point belonging to the original

distribution.
• Sampling: it can provide likely samples.

53

7.1 Variational Auto-Encoders (VAE) 7 DEEP GENERATIVE MODELLING

Figure 3: Illustration of autoencoders. Source: https://www.v7labs.com/blog/
autoencoders-guide.

7.1. Variational Auto-Encoders (VAE)

7.1.1. Auto-Encoders

AEs are a type of unsupervised model used to learn low-dimensional latent representations, z, of data
samples, x. This means that the aim is to somehow try to summarize the input data space, X, into
a smaller space, Z, so dim (Z) < dim (X). Z should capture relevant characteristics of data, and the
choice of its dimensionality is a compromise between interpretability and the amount of information
to keep.

In Figure Figure 3 we can see an illustration of autoencoders. The input is processed by the encoder,
which is able to embed it into a smaller space, the latent space. The decoder can take the point in
the latent space and reconstruct the original image.

To train them, this process is applied to the training set, and the loss function is the distance between
the reconstructed images and the original ones:

L (M, X) =
∑
x∈X

∥M (x)− x∥2 .

The problem of AEs is that they don’t allow generation, because the distribution of p (z) is difficult
to sample from.

To see this more clearly, let’s discuss an example done by Joseph Rocca, Understanding VAEs.

In the following image, we observe how, when using AEs, points in the latent space can have no
real meaning, making it difficult to sample and generate new objects, which is the ultimate goal of
generative models.

54

https://www.v7labs.com/blog/autoencoders-guide
https://www.v7labs.com/blog/autoencoders-guide
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

7.1 Variational Auto-Encoders (VAE) 7 DEEP GENERATIVE MODELLING

Figure 4: Illustration of a variational auto-encoder.. Source: Wikipedia.

What is desirable, is that somehow, points in the latent space that are close to each other, should
have a similar real meaning, once they are decoded:

This cannot be achieved with AEs, and this led to the introduction of Variational Auto-Encoders
(VAEs).

7.1.2. Variational Auto-Encodersi

In this case, the latent representation is not directly learnt, but rather a latent distribution. In
Figure Figure 4, we observe the illustration of VAEs.

In this case, training is more complex. We want to mazimize the data likelihood. More precisely, its
log-likelihood:

L (θ, ϕ, x) = log pθ (x) .

55

https://en.wikipedia.org/wiki/Variational_autoencoder

7.1 Variational Auto-Encoders (VAE) 7 DEEP GENERATIVE MODELLING

Notice that this is not dependent on the distribution of z, qϕ, so we can write:

log pθ (x) = Ez∼qϕ(z|x) [log pθ (x)] ,

and applying the reversed Bayes’ Rule:

Ez [log pθ (x)] = Ez

[
log

pθ (x|z) pθ (x)
pθ (z|x)

]
.

Here, we can multiply and divide by qϕ (z|x) and use the properties of logarithms, to get:

Ez [log pθ (x)] = Ez [log pθ (x|z)]− Ez

[
log qϕ (z|x)

pθ (z)

]
+ Ez

[
log qϕ (z|x)

pθ (z|x)

]
.

Now, recalling the definition of the Kullback-Leibler Divergence:

DKL (P ∥ Q) = EP

[
log P (x)

Q (x)

]
,

we can rewrite:

L (θ, ϕ, x) = Ez [log pθ (x|z)]−DKL (qϕ (z|x) ∥ pθ (z)) + DKL (qϕ (z|x) ∥ pθ (z|x)) .

Now, the last term is very difficult to compute, because pθ (z|x) is intractable. Since it is bigger than
0, we can bound L from below by

L (θ, ϕ, x) ≥ Ez [log pθ (x|z)]−DKL (qϕ (z|x) ∥ pθ (z)) ,

this is called the Evidence Lower Bound. The first term is called the reconstruction term, and
can be approximated by sampling and serves to ensure good reconstructions of the output. The second
term is the regularisation term, which makes the distribution of the encoder close to the prior.

The impact of the regularisation is that it enables for continuity in the latent representation, so that
similar data samples have similar latent representations; and it helps to ensure completeness of the
latent space, so that all latent points have a meaningful decoding.

Joseph Rocca illustrates this as:

In addition to enabling continuity and completeness, or maybe thanks to this, VAEs enable a much
easier sampling and generation. We can just sample z from a normal distribution, and process it
through the decoder.

56

7.2 Generative Adversarial Networks 7 DEEP GENERATIVE MODELLING

7.2. Generative Adversarial Networks

Now, the objective is to sample for a high dimensional and multi-modal distribution, p (x), by learning
a mapping, G, between a simple distribution from which we can sample and the high dimensional
distribution. For this, Generative Adversarial Networks (GANs), consist of two components:

• Discriminator: tries to distinguish between generated and real data.
• Generator: tries to fool the discriminator by creating likely samples.

This is illustrated below:

To train these models, we follow a minimax approach: the discriminator aims at maximizing its
success rate, while the generator aims to minimizing the success rate of the discriminator. This can
be expressed as:

J (D, G, X) = min
G

max
D

V (D, G, X)

= min
G

max
D

Ex∼pdata(x) [log D (x)] + Ez∼pz(z) [log (1−D (G (z)))] .

This can be divided:
• The discriminator loss is

J (D, X) = max
D

Ex∼pdata(x) [log D (x)] + Ez∼pz(z) [log (1−D (G (z)))] .

• The generator loss is

J (G, X) = min
G

Ez∼pz(z) [log (1−D (G (z)))] .

Once the training is done, generation is quite straightforward. We only need to sample z ∼ pz (z) and
process it with the generator module.
An interesting property of GANs is that they show continuous representations of the latent space, as
shown in the figure below:
In the following table, we compare GANs and VAEs in different aspects:

Sample Quality Inference Mode Coverage Training Quality Assesment Training Stability
VAE Intermediate Good Good Good Good
GAN Very good Bad Intermediate Intermediate Intermediate

57

7.3 Other Approaches 8 DENOISING DIFFUSION MODELS

Figure 5: Interpolating in the latent space of GANs. Source: [2].

7.3. Other Approaches

7.3.1. Normalizing Flows

The idea is to transform a simple distribution into acomplex one, by applying a sequence of invertible
transformation functions.
The pros of this approach is that it provides good sample quality, exact inference and stable training.
However, it requires invertible neural networks.

7.3.2. Pixel RNN

This approach consists in generated image pixels starting from the corner. The dependencies between
the current pixel and the previous ones is modelled using an RNN. The biggest drawback of this
approach is that sequential generation is very slow.

8. Denoising Diffusion Models

To train diffusion models, there are two processes involved:
• Forward process: gradually adds noice to the input, until obtaining a completely noisy image.
• Reverse process: learns to generate data by denoising.

This is illustrated in this Figure:

58

8 DENOISING DIFFUSION MODELS

The forward process can be seen as a Markov process, with starting state x0 and transition probability
q (xt|xt−1) for t = 1, ..., T :

x0
q(x1|x0)→ x1

q(x2|x1)→ x2
q(x3|x2)→ ...

q(xT −1|xT −2)→ xT −1
q(xT |xT −1)→ xT

The transition probability or Markov kernel is usually chosen to be

q (xt|xt−1) = N
(
xt;
√

1− βtxt−1, βtI
)

, βt ∈ (0, 1) ,

but it can be any Markov Diffusion Kernel. The property of these kernels is that they converge to
a standard distribution. In this case, they converge to a normal distribution, always the same, no
matter the input, x0.
Thus, the forward trajectory can be expressed as

q (x0;T) = q (x0)
T∏

t=1
q (xt|xt−1) .

And to go to step t, from the step t− 1, we just need to sample from the kernel distribution.
It is also possible to go advance several steps at once. For this, we can define the parameters:{

αt = 1− βt

α̂t = ∏t
s=1 αs

,

and use the Markov kernel
q (xt|x0) = N

(
xt;
√

α̂tx0, (1− α̂t) I
)

,

which is equivalent to do
xt =

√
α̂tx0 +

√
1− α̂tε

with ε ∼ N (0, I). This allows to go to any node in the chain in just one step.
The parameter βt is the noise scheduler, and it’s chosen to have increasing variance, in such a
way that q (xT) is a standard Gaussian. If the βt-s are small enough, the reverse transitions are also
Gaussian, but q (xt−1|xt) in intractable, but using the Bayes rule we know that

q (xt−1|xt) ∝ q (xt−1) q (xt|xt−1) ,

and we can use a model to approximate this reverse process.
That is, we are going to train a model to approximate the reverse, denoising, process. This parametric
reverse model:

• Is also a Markov chain, starting at xT .
• It starts with p (xT) = N (xT ; 0, I), since q (xT) ≈ N (0, I).
• Its transitions are learned.

So, how may we achieve this?
The reverse process is:

x0
pθ(x0|x1)← x1

pθ(x1|x2)← x2
pθ(x2|x3)← ...

pθ(xT −2|xT −1)← xT −1
pθ(xT −1|xT)← xT

So the reverse transitions are

pθ (xt−1|xt) = N
(
xt−1; µθ (xt, t), σ2

t I
)

,

59

9 TRANSFORMERS

and µθ (xt, t) will be our trainable network! The reverse trajectory is then

pθ (x0;T) = p (xT)
T∏

t=1
pθ (xt−1|xt) .

To train this, we follow a maximum likelihood approach:

J (x, θ) = − log pθ (x0)

Now, we can marginalize by integrating over the latents:

− log pθ (x0) = − log
∫

pθ (x0:T) dx1:T ,

which is a shortened notation for − log
∫

...
∫

pθ (x0, x1, ..., xT) dx1...dxT . Here, we can multiply and
divide by q (x1:T |x0):

− log pθ (x0) = − log
∫

pθ (x0:T) q (x1:T |x0)
q (x1:T |x0)dx1:T ,

which can be seen as an expectation:

− log pθ (x0) = − logEx1:T ∼q(x1:T |x0)

[
pθ (x0:T)

q (x1:T |x0)

]
,

and in this point we can use the Jensen’s inequality:

− logEx1:T ∼q(x1:T |x0)

[
pθ (x0:T)

q (x1:T |x0)

]
≤ Ex1:T ∼q(x1:T |x0)

[
− log pθ (x0:T)

q (x1:T |x0)

]
= LV LB.

We have reached LV LB, the variational lower bound. After some derivations, it is possible to arrive
to

Eq

[
DKL (q (xT |x0) ∥p (xT)) +

∑
t>1

DKL (q (xt−1|xt, x0) ∥pθ (xt−1|xt))− log pθ (x0|x1)
]

,

here DKL (q (xT |x0) ∥p (xT)) has no learnable parameters, so we can remove it, and we name:

Lt−1 = DKL (q (xt−1|xt, x0) ∥pθ (xt−1|xt))

and
L0 = − log pθ (x0|x1).

Now, DKL (P∥Q) is always non-negative, and is 0 when P = Q. Also, when conditioned on xt and
x0, the reverse process becomes tractable:

q (xt−1|xt, x0) = N
(
xt−1; µ̂t (xt, x0) , β̂tI

)
,

where µ̂t (xt, x0) =
√

α̂t−1βt

1−α̂t
x0 +

√
αt(1−α̂t−1)

1−α̂t
xt and β̂t = 1−α̂t−1

1−α̂t
βt.

Of course, we don’t have x0 available at inference time, so what we want is pθ (xt−1|xt) to be as close
as possible to q (xt−1|xt, x0). For this, we use the normal law and approximate our µ̂t (xt, x0) in our
approximated reverse process.

9. Transformers

Credits to Lucas Beyer’s slides https://acdl2023.icas.cc/dr-lucas-beyers-slides/.

60

https://acdl2023.icas.cc/dr-lucas-beyers-slides/

9.1 Attention 9 TRANSFORMERS

9.1. Attention

Attention is a function, similar to a soft k-v dictionary lookup. Let’s delve into it more precisely:

1. Attention weights, a1:N represents query-key similarities. They are defined by

âi = q · ki,

and normalized via softmax
ai = eâi∑

j eâj
.

2. Output, z, is an attention-weigthed average of the values v1:N . That is:

z =
∑

i

âivi = â · v.

3. Usually, k and v are derived from the same input x:

k = Wk · x,

v = Wv · x.

The query, q, can come from a separate input y:

q = Wq · y

or from the same input x (in which case it’s called self-attention):

q = Wq · x.

In addition, it is usual to use many queries, q1:M , not just one... Stacking the different queries leads
to the definition of the attention matrix, A1:N,1:M , and subsequently to many outputs:

z1:M = Attn (q1:M , x) = [Attn (q1, x) |...|Attn (qM , x)] .

We usually use multi-head attention. This simply means that the operation is repeated K times,
with results concatenated along the feature dimension, with different Wks.

The most commonly seen formulation of the process is

z = softmax

(
QK ′√

dkey

)
V,

where here actually Q is the query matrix, K is the key matrix, and V is the value vector. dkey is the
dimension of a key in K.

9.2. Architecture

The architecture of the transformer is the following:

61

9.2 Architecture 9 TRANSFORMERS

Let’s analyze it step by step:

• Input tokenization and embedding:

– The input text is first split into pieces, called tokens. These can be characters, words,... or
even bytes.

– Tokens can be represented as indices of a dictionary of all possible tokens.

– Each entry corresponds to a learned dmodel-dimensional vector in the embedding space.

• Positional encoding:

– Attention is permutation invariant, but language is not.

– Therefore, we need to provide a way to differenciate the position of each word. The idea is
to add something based on the position of the token in the sentence. For example, add 1
for the first position, 2 for the second, and so on. In reality, a more complex approach is
used, but with the same idea in mind.

62

9.2 Architecture 9 TRANSFORMERS

• Multi-headed self-attention:

– The input sequence is used to create queries, keys and values.

– Each token can look around the whole input sequence, and decide how to update its repre-
sentation based on what it sees. For example, the word seed will have a different represen-
tation in a biology context and in a computer science context.

• Point-wise MLP

– A simple MLP is applied to each token individually, with GeLU activation function:

zi = W2 ·GeLU (W1x + b1) + b2.

– This is as each token pondering for itself about what it has observed previosly.

– There is some weak evidence this is where the world knowledge is stored.

– It contains the bulk of the parameters of the model. When people make giant models and
sparse/moe, this is what becomes giant.

– Some people like to call it a 1× 1 convolution.

63

9.2 Architecture 9 TRANSFORMERS

• Residual connections:
– Each module’s output has the exact same shape as its input.
– Following ResNets, the module computes a residual, instead of a new value. That is, the

action of module M is
zi = M (xi) + xi.

– Was shown to dramatically improve trainability.
• LayerNorm:

– Normalization also improves trainability.
– There is post-norm (the one used originally)

zi = norm (M (xi) + xi) ,

and pre-norm (a modern approach)

zi = M (norm (xi)) + xi.

• Encoding/Encoder:
– Since input and output shapes are identical, we can stack N such blocks.
– Typically, N = 6 is base and N = 12 is large. But more can be stacked.
– Encoder output is a heavily processed version of the input tokens.

64

9.2 Architecture 9 TRANSFORMERS

– This has nothing to do with the requested output yet. This is achieved at the decoder.

• Decoding/Decoder:
– We want to model p (z|x), to select the most likely outcome.
– This seems impossible at first... but we can decompose this into tokens:

p (z|x) = p (z1|x) p (z2|z1, x) p (z3|z2, z1, x) · ...

Meaning, we can generate the answer one token at a time, where each p is a full pass
through the model.

– For generating p (z1|z2, z1, x):
1. x comes from the encoder
2. z1, z2 is what we have predicted so far, goes into the decoder.

– Once we have p (z|x), we actually need to actually sample a sentence. There are different
strategies for this, like greedy or beam-search, among others.

• At training time: masked self-attention:
– This is regular self-attention, as in the encoder, to process what’s been decoded so far (z1

and z2 in the previous example), but with a trick.

65

9.2 Architecture 9 TRANSFORMERS

– If we had to train on one single p (z3|z2, z1, x) at a time, the process would be very slow.

– Instead, we can train on all p (zi|z1:i−1, x) simultaneously.

– For this, in the attention weights for zi, we set all entries i : N to 0, and use the ground
truth y to simulate that we have already computed the previous tokens of z.

• At generation time:

– This trick is not possible now. We need to generate each zi at a time.

– This is why autoregressive encoding is extremely slow.

• Cross-attention:

– Each decoded token can look at the encoder’s output:

Attn (q = Wqxdec, k = Wkxenc, v = Wvxenc) .

– This is where the conditional |x in p (zi|z1:i−1, x) comes from.

– Since self-attention is so widely used, people have started to call it attention, and cross
attention, which is in fact the original attention, is usually called cross-attention.

• Feedforward and stack layers: similar as before.

66

9.3 The first big takeover: Language Modeling 9 TRANSFORMERS

• Output layer:

– Assume we have already generated K tokens, we generate the next one.

– The decodeer was used to gather all information necessary to predict a probability distri-
bution for the enxt token over the whole vocabulary.

– It is fairly simple: a linear projection of token K and a softmax normalization to select
the output.

9.3. The first big takeover: Language Modeling

9.4. The second big takeover: Computer Vision

Previous approaches used attention by:

• Applying it at the pixel level, but locally or factorized. The results are usually not amazing,
definitely not justifying the increased complexity nor the slowdown over convolution networks.

67

9.5 The third big takeover: speech 9 TRANSFORMERS

• Globally, after or inside a full-blown CNN, or even in a detector/segmenter architecture. The
results were highly complex, often multi-stage trained architecture. Also, the transformer can’t
learn to fix the CNN’s mistakes.

Then came the Vision Transformer. Many prior works attempted to introduce self-attention at the
pixel level. For 224px2, this is a 50k sequence length. Definitely too much. Therefore, most works
restrict attention to local pixel neighbourhoods, or as high-level mechanism on top of detections.

The key breakthrough for using the full transformer architecture, standalone, was to tokenize the
images by cutting it into patches of 16x16 pixels, and treating each patch as a token... i.e., embedding
it into an input space.

9.5. The third big takeover: speech

The conformer is a modified architecture, following a same story as happened in the vision realm,
but with spectograms of the sounds instead of images.

The conformer adds a third type of block, using convolutions, and slightly reorder blocks, but overal
is very similar to transformer.

It exists as encoder-decoder, or as encoder-only variant with CTC loss.

9.6. The fourth big takeover: Reinforcement Learning

The decision transformer casts the supervised/online RL problem into a sequence modeling task.
It can generate/decode sentences of actions with desired return. The trick is prompting:

“The following is a trajectory of an expert player: [obs] ...”

9.7. The Transformer’s unification of communities

Anything we can tokenize, we can feed to Transformer! The idea is basically to tokenize different
modalities, each one in their own way, and send them all jointly into a Transformer... And this seems
to work.

This is called multimodal model, and there is currently an explosion of works doing this.

9.8. A note on efficient transformers

The self-attention operation complexity is O
(
N2) for sequence length N , because we need to compute

a matrix product of size N . We’d like to use larger N , for whole articles or books, full video movies,
high resolution images, etc.

Many O (N) approximations to the full self-attention have been proposed, but none provides yet a
clear improvment. There seems to always be a trade-off between speed and quality.

68

9.8 A note on efficient transformers 9 TRANSFORMERS

69

10 INTRODUCTION

Part II.
Reinforcement Learning
10. Introduction

People and animals learn by interacting with the environment that sorround them, differing from
certain other types of learning. This process is active, rather than passive: the subject needs to
perform interactions with the environment, to obtain knowledge. Also, the interactions are usually
sequential, with future interactions possibly depending on earlier ones.
Not only this, but we are goal oriented: we act towards an objective. And, more importantly, we can
learn without examples of optimal behavior! Instead, we optimise some reward signal obtained from
the outcome of our actions.
It is in these observation that Reinforcement Learning (RL) arises as a learning paradigm, based
on the interaction loop: there is an agent in an environment; the agent can make actions in the
environment, and get observations from it.

RL relies on the reward hypothesis:

Conjecture 10.1. Reward Hypothesis
Any goal can be formalized as the outcome of maximizing a cumulative reward.

This hypothesis basically says that every objective that an agent can have, can be stated in terms of
maximizing a reward associated to the actions of the agent with respect to this objective.
For example, if the objective of the agent is to fly a helicopter from point A to point B, then the
reward could be negatively affected by the distance to point B, by the time taken to reach B,...
Now, it is important to realize that there exist different reasons to learn:

• Find solutions to problems.
• Adapt online to unforseen circumstances.

Well, RL can provide algorithm for both cases! Note that the second point is not just about general-
ization, but also to cope with the so-called data shift, efficiently, during operation.
With all this, now we can define RL:

Definition 10.1. Reinforcement Learning is the science and framework of learning to make
decisions from interaction.

This requires us to think about time, consequences of actions, experience gathering, future prediction,
uncertainty,...
It has a huge potential scope and is a formalisation of the AI problem.

70

11 DEFINITION AND COMPONENTS

11. Definition and components

Definition 11.1. The environment is the world of the problem at hand, with agents in it
that can perform actions, over time.
At each time step t, the agent:

• Receives observation Ot and reward Rt from the environment.

• Executes action At.

And the environment:

• Receives action At.

• Emits observation Ot+1 and reward Rt+1.

But, what is a reward?

A reward, Rt, is a scalar feedback signal which indicates how well the agent is doing at step t: it
defines how well the goal is being accomplished!

Therefore, the agent’s job is to maximize the cummulative reward of the future steps, i.e.,

Gt = Rt+1 + Rt+2 + Rt+3 + ...

This is called the return. But, when one thinks about it carefully, one realizes that it is hard to
know the future rewards with such precision. Therefore, it is also usual to use the value, which is the
expected return, taking into account the current state, s:

v (s) = E [Gt|St = s] .

This depends on the actions the agents takes, and the goal is to maximize it! To achieve this, the
agent must pick suitable actions.

Therefore, rewards and values define the utility of states and actions, and in this setup there is no
supervised feedback.

Note, also, that this values can be defined recursively as

Gt = Rt+1 + Gt+1,

v (s) = E [Rt+1 + v (St+1) |St = s] .

The environment state is the environment’s internal state, which is usually invisible or partially
visible to the agent. It is very important, but it can also contain lots of irrelevant information.

An environment is fully observable when the agent can see the full environment state, so every
observation reveals the whole environment state. That is, the agent state could just be the observation:

St = Ot.

Note that St is the agent state, not the environment state!

71

11.1 Maximising the value by taking actions 11 DEFINITION AND COMPONENTS

11.1. Maximising the value by taking actions

As we have outlined, the goal is to select the actions that maximise the value. For this, we may need
to take into account that actions may have long term consequences, delaying rewards. Thus, it may
be better to sacrifice immediate reward to gain long-term reward.
The decision making process that for a given state chooses which action to take is called a policy.
To decide which action to take, we can also condition the value on actions:

q (s, a) = E [Gt|St = s, At = a] ,

so, for a given state s, a possible set of actions As
t , we could decide which action to take as

at = max
a∈As

t

q (s, a) .

Then, the history is the full sequence of observation, actions and rewards:

Ht = O0, A0, R1, O1, ..., Ot−1, At−1, Rt, Ot.

11.2. Markov Decision Processes

Markov Decision Processes (MDPs) are a useful mathematical framework, defined as:

Definition 11.2. A decision process is Markov if

p (r, s|St, At) = p (r, s|Ht, At) .

This means that the current state is the only information needed to make a decision, we don’t need
the full story. For example, think in a chess game: there are many ways to arrive to a certain position,
but it really does not matter how to got to the position, the past does not affect your choice now.
In order for a process to be Markov, full observability is required. When the situation is of partial
observability, the observations are not Markovian, so using the observation as state is not enough to
make the decision. This is called a partially observable Markov decision process (POMDP).
Note that the environment state can still be Markov, but the agent does not know it. In this case, we
might be able to construct a Markov agent state.
In the general case, the agent state is a function of the history:

St+1 = u (St, At, Rt+1, Ot+1) ,

where u is a state update function.
Usually, the agent state is much smaller than the environment state.

Example 11.1. A not Markov process:
Consider the following maze to be the full environment:

72

11.3 Policies 11 DEFINITION AND COMPONENTS

And consider the following observations:

They are indistinguishable! This process is not Markov, because only taking into account the current
state, we cannot identify where we are.

To deal with partial observability, agent can construct suitable state representations. Some examples
of agent states are:

• Last observation: St = Ot (might not be enough).
• Complete history: St = Ht (might be too large).
• A generic update: St = u (St−1, At−1, Rt, Ot) (but how to design u?)

Constructing a fully Markovian agent state is often not feasible and, more importantly, the state
should allow for good policies and value predictions.

11.3. Policies

As we saw, a policy defines the agent’s behavior: it is a map from the agent state to an action.
Policies can be deterministic,

A = π (S) ,

or stochastic,
π (A|S) = p (A|S) .

11.4. Value Functions

We saw the value before, which is the expected return. However, it is usual to introduce a discount
factor, γ ∈ [0, 1], which trades off importance of immediate and long-term rewards. This way, the
value becomes

vπ (s) = E [Gt|St = s, π] = E
[
Rt+1 + γRt+2 + γ2Rt+3 + ...|St = s, π

]
.

The value depends on the policy, π, and can be used to evaluate the desirability of states, as well as
to select between actions.
Note the role of the discount factor: the higher it is, the higher the focus on long term outcomes.
Now, using the recursive expression of the return, Gt = Rt+1 + γGt+1, we can rewrite the value as

vπ (s) = E [Rt+1 + γvπ (St+1) |St = a, At ∼ π (s)] ,

where A ∼ π (s) means A is chosen by policy π in state s. This is known as a Bellman equation. A
similar equation holds for the optimal value, i.e., the highest possible value:

v∗ (s) = max
a

E [Rt+1 + γv∗ (St+1) |St = s, At = a] .

Note how this does not depend on a policy, it is just the maximum achievable value from the current
state.

73

11.5 Model 11 DEFINITION AND COMPONENTS

11.4.1. Value Function Approximations

Agents often approximate value functions, and with an accurate value function approximation, the
agent can behave optimally, or very well, even in intractably big domains.

11.5. Model

A model predicts what the environment will do next. For example, P predicts the next state, given
the current state and an action:

P
(
s, a, s′) ≈ p

(
St+1 = s′|St = s, At = a

)
.

Or R predicts the next immediate reward:

R (s, a) ≈ E [Rt+1|St = s, At = a] .

Note that a model does not immediately give us a good policy! We still need to plan and see how
actions and states are related.

Example 11.2. Consider the following maze, where the rewards are -1 per time-step, the actions are
to go N, E, S and W, and the states are the agent’s location:

Start

End

The following arrows represent the policy, π (s), for each state s:

Start

End

In the following one, the numbers represent the value vπ (s) of each state s:

74

11.6 Agent categories 11 DEFINITION AND COMPONENTS

-14 -13 -12 -11 -10 -9
Start -16 -15 -12 -8

-16 -17 -6 -7
-18 -19 -5

-24 -20 -4 -3
-23 -22 -21 -22 -2 -1 End

The grid layout represents the partial transition model Pa
ss′ , and numbers represent the immediate

reward, Ra
ss′ from each state s, which is -1 for all a and s′ in this case.

11.6. Agent categories

An agent is model free when the behavior of the environment is not known. The agent needs a policy
or a value function to operate and there is no model. On the other hand, it is model based when
the environment is known by means of a model. In this case, a policy and a value function might be
optional, since it is possible that the agent can operate just knowing the model.
Model free agents are simpler, while model based agents are more sample efficient.
Another categorization is the following:

• Value based: there is no policy, it is implicit in the value function.
• Policy based: there is no value function, the model operates only by means of the policy.
• Actor critic: they have both a policy and a value function.

11.7. Subproblems of RL

Prediction consists in evaluating the future, for a given policy, i.e., what are the values in each state?
Control refers to the problem of optimising the future to find the best policy, i.e., which actions to
take?
These two problems are strongly related, because the best actions to take will be decided using our
predictions about the future:

π∗ (s) = arg max
π

vπ (s) .

Two fundamental problems in RL are:
• Learning: the environment is initially unknown and the agent interacts with it to learn.
• Planning/search: a model of the environment is given or learnt, and the agent plans in this

model.
In order to learn, we need to define all components of the problem as functions:

• Policy: π : S → A (or probabilities over A).
• Value functions: v : S → R.
• Models: p : S → S or r : S → R.
• State update: u : S ×O → S.

Then, we can use, for example, neural networks and deep learning techniques to learn. But we do
need to be careful, because in RL it is usual to violate assumptios made in supervised learning, such
as having i.i.d. samples, or stationarity.

75

12 MARKOV DECISION PROCESSES

12. Markov Decision Processes

We saw the notion of MDP, and now we formalize it:

Definition 12.1. A Markov Decision Process (MDP) is a tuple (S, A, p, γ) where:

• S is the set of all possible states with the Markov Property.

• A is the set of all possible actions.

• p (r, s′|s, a) is the joint probability of a reward, r, and next state, s′, given a state s and
an action a.

• γ ∈ [0, 1] is a discount factor that trades off later rewards to earlier ones.

Remark 12.1. p defines the dynamics of the problem.
Sometimes, it is useful to marginalise out the state transitions or expected rewards:

p
(
s′|s, a

)
=
∑

r

p
(
s′, r|s, a

)
,

to obtain the probability of arriving to a certain state.
Also, the expected reward:

E [R|s, a] =
∑

r

r
∑
s′

p
(
r, s′|s, a

)
.

There is an alternative equivalent definition, which introduces the notion of the expected reward into
the concept, and takes it out of the probabity function:

Definition 12.2. A MDP is a tuple (S, A, p, r, γ) where:

• S is the set of all possible states with the Markov Property.

• A is the set of all possible actions.

• p (s′|s, a) is the probability of transitioning to s′, fiven a state s and an action a.

• r : S ×A→ R is the expected reward, achieved on a transition starting in (s, a),

r = E [R|s, a] .

• γ ∈ [0, 1] is a discount factor that trades off later rewards to earlier ones.

Now, we have to clarify what is the Markov Property:

Definition 12.3. Consider a sequence of random variables, {St}t∈N, indexed by time and taken
from a set of states S. Consider also the set of actions A and rewards in R.
A state s has the Markov Property when, for all s′ ∈ S,

p
(
St+1 = s′|St = s

)
= p

(
St+1 = s′|ht−1, St = s

)
,

for all possible histories ht−1 = {S1, ..., St−1, A1, ..., At−1, R1, ..., Rt−1}.

76

12 MARKOV DECISION PROCESSES

Therefore, in an MDP, the current state captures all relevant information from the history, it is a
sufficient statistic of the past. So, once the state is known, the history may be thrown away.

Exercise 12.1. In an MDP, which of the following statemest are true?

1. p (St+1 = s′|St = s, At = a) = p (St+1 = s′|S1, ..., St−1, A1, ..., At, St = s): false, the RHS does
not condition on At = a.

2. p (St+1 = s′|St = s, At = a) = p (St+1 = s′|S1, ..., St−1, St = s, At = a): true.

3. p (St+1 = s′|St = s, At = a) = p (St+1 = s′|S1, ..., St−1, St = s): false, the RHS does not condition
on At = a.

4. p (Rt+1 = r, St+1 = s′|St = s) = p (Rt+1 = r, St+1 = s′|S1, ..., St−1, St = s): true.

It is also worth noting that most MDPs are discounted, and there are several reasons for these:

• Problem specification: immediate rewards may actually be more valuable. For instance, ani-
mal/human behavior shows preference for immediate reward.

• Solution side: it is mathematically convenient to discount rewards, because it allows for easier
proofs of convergence, and avoids infinite returns in cyclic Markov processes.

As we outlined previously, the goal of an RL agent is to find a behavior policy that maximises the
expected return Gt. Recall our definition for value funtion

vπ (s) = E [Gt|St = s, π] .

Similarly, we can define the state-action values, as

qπ (s, a) = E [Gt|St = s, At = a, π] ,

and there is the following connection between them:

vπ (s) =
∑

a

π (a|s) qπ (s, a) = E [qπ (St, At) |St = s, π] , ∀s ∈ S.

Also, we can define the maximum possible value functions:

Definition 12.4. The optimal state value function, v∗ (s), is the maximum value function
over all policies,

v∗ (s) = max
π

vπ (s) .

The optimal state-action value function, q∗ (s, a), is the amximum state-action value func-
tion over all policies,

q∗ (s, a) = max
π

qπ (s, a) .

The optimal value function specifies the best possible performance in the MDP. We can consider the
MDP to be solved when we know the optimal value function.

In addition, value functions allow us to define a partial ordering over policies, having

π ≥ π′ ⇐⇒ vπ (s) ≥ vπ′ (s) ,∀s ∈ S.

With this partial ordering, the following theorem state that optimal policies exist for every MDP:

77

12 MARKOV DECISION PROCESSES

Theorem 12.1. Optimal Policies Theorem
For any MDP:

• There exists an optimal policy π∗ that is better than or equal to all other policies,

π∗ ≥ π,∀π.

• All optimal policies achieve the optimal value function,

vπ∗ (s) = v∗ (s) .

• All optimal policies achieve the optimal state-action value function,

qπ∗ (s, a) = q∗ (s, a) .

To find an optimal policy, we can maximise over q∗ (s, a):

π∗ (s, a) =
{

1 if a = arg maxa∈A q∗ (s, a)
0 otherwise

.

That is, the optimal policy is to take action a in state s if a is the action that gives the highes
state-action value given state s.

Remark 12.2. There is always a deterministic optimal policy for any MDP, and we know q∗ (s, a), we
know the optimal policy immediately.
Also, there can be multiple optimal policies, and if multiple actions maximize q∗ (s, ·), we can pick any
of them.

Now, recall the Bellman Equations we saw previously. The following theorem explains how to express
the value functions by means of these equations:

Theorem 12.2. Bellman Expectation Equations
Given an MDP, M = (S, A, p, r, γ), for any policy π, the value functions obey the followin
expectation equations:

vπ (s) =
∑

a

π (s, a)
[
r (s, a) + γ

∑
s′

p
(
s′|a, s

)
vπ
(
s′)] ,

and
qπ (s, a) = r (s, a) + γ

∑
s′

p
(
s′|a, s

) ∑
a′∈A

π
(
a′|s′) qπ

(
s′, a′) .

Theorem 12.3. Bellman Optimality Equations
Given an MDP, M = (S, A, p, r, γ), the optimal value functions obey the following expectation
equations:

v∗ (s) = max
a∈A

[
r (s, a) + γ

∑
s′

p
(
s′|a, s

)
v∗ (s′)] ,

q∗ (s, a) = r (s, a) + γ
∑
s′

p
(
s′|a, s

)
max
a′∈A

q∗ (s′, a′) .

78

12.1 Solving Reinforcement Learning Problems with Bellman Equations12 MARKOV DECISION PROCESSES

Remark 12.3. There can not be a policy with a higher value than v∗ (s) = maxπ vπ (s) , ∀s.

Intuition on the proof for the Bellman Optimality Equations:
An optimal policy can be found by maximising over q∗ (s, a),

π∗ (s, a) =
{

1 if a = arg maxa∈A q∗ (s, a) ,

0 otherwise.

Applyin the Bellman Expectation Equation:

qπ∗ (s, a) =r (s, a) + γ
∑
s′

p
(
s′|a, s

) ∑
a′∈A

π∗ (a′|s′) qπ∗
(
s′, a′)

=r (s, a) + γ
∑
s′

p
(
s′|a, s

)
max
a′∈A

q∗ (s′, a′) .

We can also express the Bellman equations in matrix form, as

V = Rπ + γP πV,

where vi = v (si) , Rπ
i = E [Rt+1|St = si, At ∼ π (St)] and P π

ij = p (sj |si) = ∑
a π (a|si) p (sj |si, a).

This is a linear equations, that can be solved directly:

(I − γP π) V =Rπ

V = (I − γP π)−1 Rπ.

The computational complexity is O
(
|S|3

)
, making this only feasible for small problems. This makes

it helpful to design other methods for larger problems. For example, there are iterative methods such
as dynamic programming, monte-calro evaluation and temporal-difference learning.

12.1. Solving Reinforcement Learning Problems with Bellman Equations

Pb1. Estimating vπ or qπ is called policy evaluation, or prediction:
a) Given a policy, what is my expected return under that behavior?
b) Given this treatment protocol/trading strategy, what is my expected return?

Pb2. Estimating v∗ or q∗ is sometimes called control, because these can be used for policy optimi-
sation:

a) What is the optimal way of behaving? What is the optimal value function?
b) What is the optimal treatment? What is the optimal control policy to minimise time, fuel

consumption, etc?

Exercise 12.2. Consider the following MDP:

79

12.1 Solving Reinforcement Learning Problems with Bellman Equations12 MARKOV DECISION PROCESSES

The actions have a 0.9 probability of success and with 0.1 probability we remain in the same state.

Rt = 0 for all transitions that end up in S0 and Rt = −1 for all other transitions.

Discount factor: γ = 0.9.

Questions:

• What is vπ for π (s) = a1 (→) , ∀s?

According to the Bellman Equations:

vπ (s) =
∑

a

π (s, a)
[
r (s, a) + γ

∑
s′

p
(
s′|a, s

)
vπ
(
s′)] ,

vπ (s0) =π (s0, a1✓) [r (s0, a1✓) + 0.9 · [p (s1|a1, s0) vπ (s1) + p (s2|a1, s0) vπ (s2)]] + π (s0, a1×) · [r (s0, a1×) + 0.9 · p (s0|s0, a1×) vπ (s0)]
=0.9 · [−1 + 0.9 · [0 + vπ (s2)]] + 0.09 · vπ (s0)
=− 0.9 + 0.81 · vπ (s2) + 0.09 · vπ (s0) .

Isolating, vπ (s0), we get

0.91vπ (s0) = −0.9 + 0.81 · vπ (s2) =⇒ vπ (s0) = −0.99 + 0.89 · vπ (s2) .

Now, let’s go for vπ (s2):

vπ (s2) =π (s2, a1✓) [r (s2, a1✓) + 0.9 · [p (s0|a1, s2) vπ (s0) + p (s1|a1, s2) vπ (s1)]] + π (s2, a1×) · [−1 + 0.9 · vπ (s2)]
=0.9 · [0 + 0.9 · [vπ (s0) + 0]] + 0.1 [−1 + 0.9 · vπ (s2)]
=0.81 · vπ (s0)− 0.1 + 0.09 · vπ (s2)
=0.81 · (−1 + 0.9 · vπ (s2))− 0.1 + 0.09 · vπ (s2)
=− 0.91 + 0.82 · vπ (s2) .

Therefore,
vπ (s2) = −0.91

0.18 = −5.06.

This means that
vπ (s0) = −5.49.

Finally,

vπ (s1) =π (s1, a1) [r (s1, a1) + 0.9 · [p (s0|a1, s1) vπ (s0) + p (s2|a1, s1) vπ (s2)]] + π (s1, a1×) · [−1 + 0.9 · vπ (s1)]
=0.9 · [0 + 0.9 · [−5.49 + 0]] + 0.1 · [−1 + 0.9 · vπ (s1)]
=− 4.45− 0.1 + 0.09 · vπ (s1) .

=− 4.55 + 0.09 · vπ (s1) .

So
vπ (s1) = −4.55

0.91 = −5.

That is, vπ (s0) = −5.49, vπ (s1) = −5 and vπ (s2) = −5.06.

80

12.1 Solving Reinforcement Learning Problems with Bellman Equations12 MARKOV DECISION PROCESSES

• What is vπ for the uniformly random policy?

This is: with probability 0.1, stay in the same state, with probability 0.45 choose a1 and with
probability 0.45 choose a2. For s0:

vπ (s0) =0.1 · 0.9 · vπ (s0) + 0.45 · [−1 + 0.9 · vπ (s2)] + 0.45 · [−1 + 0.9 · vπ (s1)]
=0.09 · vπ (s0)− 0.9 + 0.405 · vπ (s2) + 0.405 · vπ (s1) ,

so
vπ (s0) = −0.99 + 0.445 · vπ (s2) + 0.445 · vπ (s1) .

For s1:

vπ (s1) =0.1 · [−1 + 0.9 · vπ (s1)] + 0.45 · [0 + 0.9 · vπ (s0)] + 0.45 · [0 + 0.9 · vπ (s0)]
=− 0.1 + 0.09 · vπ (s1) + 0.81 · vπ (s0) ,

so
vπ (s1) = −0.1 + 0.9 · vπ (s0) .

For s2:

vπ (s2) =0.1 · [−1 + 0.9 · vπ (s2)] + 0.45 · [0 + 0.9 · vπ (s0)] + 0.45 · [0 + 0.9 · vπ (s0)]
=− 0.1 + 0.09 · vπ (s2) + 0.81 · vπ (s0) ,

so
vπ (s2) = −0.1 + 0.9 · vπ (s0) .

Therefore_

vπ (s0) =− 0.99 + 0.89 · (−0.1 + 0.9 · vπ (s0))
=− 0.99− 0.089 + 0.8 · vπ (s0)
=− 1.08 + 0.8 · vπ (s0) .

That is,
vπ (s0) = −5.4.

And,
vπ (s1) = vπ (s2) = −4.96.

• Same policy evaluation problems for γ = 0? What do you notice?

First, π (s) = a1 (→) , ∀s:

vπ (s0) =0.1 · 0 + 0.9 · (−1)
=− 0.9.

vπ (s1) =0.1 · (−1) + 0.9 · (0)
=− 0.1.

vπ (s2) =− 0.1.

81

12.2 Dynamic Programming 12 MARKOV DECISION PROCESSES

Second, π (s) the random policy:

vπ (s0) =0.1 · 0 + 0.45 · (−1) + 0.45 · (−1)
=− 0.9.

vπ (s1) =0.1 · (−1) + 0.9 · (0)
=− 0.1.

vπ (s2) =− 0.1.

We can observe that if we don’t take the discount factor into account, two very different policies
can give us the same (short term) values.

12.2. Dynamic Programming

Dynamic programming refers to a collection of algorithms that can be used to compute optimal
policies given a perfect model of the environment as a Markov Decision Process (MDP).

-Sutton & Barto, 2018

We will discuss several dynamic programming methods to solve MDPs, all of which consist of two
important parts:

• Policy evaluation.
• Policy improvement.

12.2.1. Policy Evaluation

We start by discussing how to estimate

vπ (s) = E [Rt+1 + γvπ (St+1) |s, π] .

The idea is to turn the equality into an update rule. The process is described in the following algorithm:
1 def policy_eval (S, R, pi , gamma):
2

3 v = [0 for s in S]
4

5 repeat until converge :
6 for s in S:
7 v_new(s) = E[R + gamma * v(S_t +1) | S_t = s, pi]
8

9 v = v_new
10

11 return v

Note that this algorithm always converge under appropriate conditions, like γ < 1. We will delve into
this later.

Example 12.1. Policy Evaluation example.
Take the following MDP:

82

12.2 Dynamic Programming 12 MARKOV DECISION PROCESSES

1 2 3
4 5 6 7
8 9 10 11
12 13 14

The possible actions are to go up, down, left, right and when you reach the red cells, you finish. Each
transitions costs -1 point.
Let’s evaluate the random policy with γ = 1.
Initialization:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Step 1: we do
v (s) = E [R + γv (S) |S, π] ,

so for example, for cell (1), it is:

v (1) = 1
3 (−1 + 1 · 0) · 3 = −1.

0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0

Step 2:
v (1) = 1

3 (−1 + 1 · 0) + 2
3 (−1− 1) = −1.7.

0 -1.7 -2 -2
-1.7 -2 -2 -2
-2 -2 -2 -1.7
-2 -2 -1.7 0

Step 3:
v (1) = 1

3 (−1 + 0) + 2
3 (−1− 2) = −2.3.

0 -2.3 -2.9 -3
-2.3 -2.9 -3 -2.9
-2.9 –3 -2.9 -2.3
-3 -2.9 -2.3 0

And so on... It would converge at

0 -14 -20 -22
-14 -18 -20 -20
-20 -20 -18 -14
-22 -20 -14 0

83

12.2 Dynamic Programming 12 MARKOV DECISION PROCESSES

12.2.2. Policy Improvement

We can use the values computed with policy evaluation to improve the policy. The simplest way to
achieve this is with a greedy policy improvement approach, which is as follows:

1 def policy_improvement (S, R, pi , gamma)
2 pi_new = {}
3

4 v = [0 for s in S]
5

6 for s in S:
7 v(s) = policy_eval (S, R, pi , gamma)
8 pi_new [v] = argmax_a E[R + gamma*v(S_t +1) | S_t = s, A_t = a]
9 pi = pi_new

10

11 return pi_new

Claim 12.1. It is possible to show that

vπnew (s) ≥ vπ (s) ,∀s.

Example 12.2. We can use this greedy approach combined with the previous example:

Initialization, with random policy:

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0 ↓,←,→ ↓,←,→ ↓,←
↑, ↓,→ ↑, ↓,←,→ ↑, ↓,←,→ ↑, ↓,←
↑, ↓,→ ↑, ↓,←,→ ↑, ↓,←,→ ↑, ↓,←
↑,→ ↑,←,→ ↑,←,→

Step 1:

0 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 -1
-1 -1 -1 0

0 ← ↓,←,→ ↓,←
↑ ↑, ↓,←,→ ↑, ↓,←,→ ↑, ↓,←

↑, ↓,→ ↑, ↓,←,→ ↑, ↓,←,→ ↓
↑,→ ↑,←,→ →

Step 2:

0 -1.7 -2 -2
-1.7 -2 -2 -2
-2 -2 -2 -1.7
-2 -2 -1.7 0

0 ← ← ↓,←
↑ ↑,← ↑, ↓,←,→ ↓
↑ ↑, ↓,←,→ ↓,→ ↓
↑,→ → →

Step 3:

0 -2.3 -2.9 -3
-2.3 -2.9 -3 -2.9
-2.9 –3 -2.9 -2.3
-3 -2.9 -2.3 0

0 ← ← ↓,←
↑ ↑,← ↑, ↓,←,→ ↓
↑ ↑, ↓,←,→ ↓,→ ↓
↑,→ → →

Step converged:

84

12.3 Extensions to Dynamic Programming 12 MARKOV DECISION PROCESSES

0 -14 -20 -22
-14 -18 -20 -20
-20 -20 -18 -14
-22 -20 -14 0

0 ← ← ↓,←
↑ ↑,← ↑, ↓,←,→ ↓
↑ ↑, ↓,←,→ ↓,→ ↓
↑,→ → →

Observe how in the second iteration we already found the optimal policy!
In this example, we showed how we can use evaluation to improve our policy, and in fact we obtained
the optimal policy. However, the greedy approach does not always ensure reaching the optimal policy.

This approach is called policy iteration:
• Policy evaluation: estimate vπ.
• Policy improvement: generate π′ ≥ π.

It is natural to ask if policy evaluation need to converge to vπ or if we should stop the evaluation at
some point. Ways to stop it are to put a threshold of minimum change between iterations, or simply
after k iterations. One extreme, which is in fact quite usual in practice, is to stop after k = 1, which
is equivalent to value iteration:

1 def value_iter (S, R, pi , gamma):
2

3 v = [0 for s in S]
4

5 repeat until converge
6 for s in S:
7 v_new(s) = max_a E[R + gamma * v(S_t +1) | S_t = s, A_t = a]
8

9 v = v_new
10

11 return v

In the following table, we sum up the different approaches:

Problem Bellman Equation Algorithm
Prediction Bellman Expectation Eq Iterative Policy Eval

Control Bellman Expectation Eq + (Greedy) Policy Improvement Policy Iteration
Control Bellman Optimality Eq Value Iteration

Observations
• The algorithms are based on state-value functions vπ (s) or v∗ (s), with complexity O

(
|A| |S|2

)
per iteration.

• It could also be applied to action-value functions qπ (s, a) or q∗ (s, a), with complexity O
(
|A|2 |S|2

)
per iteration.

12.3. Extensions to Dynamic Programming

12.3.1. Asynchronous Dynamic Programming

DP methods described so far used synchronous updates, meaning all states are updated in parallel.
In contrast, asynchronous DP backs up states individually, in any order. This can significantly
reduce computation, and it is guaranteed to converge if all states continue to be selected.
We are going to see three approaches for ADP:

85

13 MODEL-FREE PREDICTION

In-Place DP Before, with synchronous value iteration, we stored two copies of the value function:

vnew (s) = max
a

E [Rt+1 + γv (St+1) |St = s, At = a] ,

v = vnew.

Now, in-place value iteration stores only one copy of the value function, doing:

v (s) = max
a

E [Rt+1 + γv (St+1) |St = s, At = a] .

Prioritised Sweeping We can use the magnitude of the Bellman error to guide the state selection.
For example:

E =
∣∣∣max

a
E [Rt+1 + γv (St+1) |St = s, At = a]− v (s)

∣∣∣ .
We then backup the state with the largest remaining Bellman error, and update the Bellman error
of affected states after each backup. This reuires knowledge of reverse dynamics (which are the
predecessor states). It can be implemented efficiently with a priority queue.

Real-Time DP The idea in this case is to only update states that are relevant to the agent. For
example, if the agent is in state St, we update that state value, or the states that it expects to be in
soon.

Full-Width backups Standard DP uses full-width backups. This means that, for each backup, it
being synchronous or asynchronous:

• Every successor state and action is considered.

• Using the true model of transitions and reward function.

DP is effective for medium-sized problems (with millions of states). For large problems DP suffers
from the curse of dimensionality, since the number of states grows exponentially with the number of
state variables, and even one full backup can be too expensive.

Sample Backups This approach consists in using sample rewards and sample transitions (s, a, r, s′)
instead of the reward function R, and the transition dynamics, P .

It presents some advantages:

• It’s model free: knowledge about the MDP is not required.

• Breaks the curse of dimensionality through sampling.

• Cost of backup is constant, independent of n = |S|.

13. Model-Free Prediction

13.1. Monte Carlo Algorithms

We can use experience samples to learn without a model. The direct sampling of episodes is called
Monte Carlo, and this is a model-free approach, because we don’t need knowledge about the MDP,
only the samples.

86

13.1 Monte Carlo Algorithms 13 MODEL-FREE PREDICTION

13.1.1. Monte Carlo Policy Evaluation

We consider sequential decision problems, and our goal is to learn vπ from episodes of experience
under policy π:

S1, A1, R2, ..., Sk ∼ π.

The return is the total discounted reward, for an episode ending at time T < t:

Gt = Rt+1 + γRt+1 + ... + γT −t−1RT .

The value function is the expected return:

vπ (s) = E [Gt|St = s, π] .

We could also use just the sample average return, instead of the expected return.

13.1.2. First-Visit Monte Carlo Policy Evaluation

1 def FV_MC_PE :
2 # Initialization
3 foreach s:
4 N(s) = 0
5 G(s) = 0
6

7 # Computation
8 loop:
9 # Sample episode

10 e_i = s[i,1], a[i,1], r[i,1], s[i,2], a[i,2], r[i,2] , ..., s[i,T_i]
11

12 # Compute return from time step t onwards in episode i
13 G[i,t] = r[i,t] + gamma * r[i,t+1] + ... + gamma ** (T_i - 1) * r[i, T_i]
14

15 foreach time step t till the end of episode i:
16 s = e_i[i, t]. state
17 if not visited [s, i]:
18 N(s) = N(s) + 1 # Increment total visits counter
19 G(s) = G(s) + G[i,t] # Increment total return
20 V_pi(s) = G(s) / N(s) # Update estimate

Properties:
• V π is an unbiased estimator of the true Eπ [Gt|st = s].
• By the law of large numbers, as N (s)→∞ we have V π → Eπ [Gt|st = s].

13.1.3. Every-Visit Monte Carlo Policy Evaluation

1 def EV_MC_PE :
2 # Initialization
3 foreach s:
4 N(s) = 0
5 G(s) = 0
6

7 # Computation
8 loop:
9 # Sample episode

10 e_i = s[i,1], a[i,1], r[i,1], s[i,2], a[i,2], r[i,2] , ..., s[i,T_i]

87

13.2 Temporal Difference Learning 13 MODEL-FREE PREDICTION

11

12 # Compute return from time step t onwards in episode i
13 G[i,t] = r[i,t] + gamma * r[i,t+1] + ... + gamma ** (T_i - 1) * r[i, T_i]
14

15 foreach time step t till the end of episode i:
16 s = e_i[i, t]. state
17 N(s) = N(s) + 1 # Increment total visits counter
18 G(s) = G(s) + G[i,t] # Increment total return
19 V_pi(s) = G(s) / N(s) # Update estimate

Properties:
• V π is a biased estimator of Eπ [Gt|st = s].
• But it is consistent and often with better MSE.

13.1.4. Incremental Monte Carlo Policy Evaluation

1 def EV_MC_PE :
2 # Initialization
3 foreach s:
4 N(s) = 0
5 G(s) = 0
6

7 # Computation
8 loop:
9 # Sample episode

10 e_i = s[i,1], a[i,1], r[i,1], s[i,2], a[i,2], r[i,2] , ..., s[i,T_i]
11

12 # Compute return from time step t onwards in episode i
13 G[i,t] = r[i,t] + gamma * r[i,t+1] + ... + gamma ** (T_i - 1) * r[i, T_i]
14

15 for j=1: T_i:
16 V_pi(s[j,t]) = V_pi(s[j,t]) + alpha * (G[j,t] - V_pi(s[j,t]))

These algorithms can be used to learn value predictions, but when episodes are long, the learning
process can be slow, because we have to wait until an episode ends before we can learn. In addition,
the return can have high variance. Therefore, it would be nice to have other methods.

13.2. Temporal Difference Learning

The core of TD learning is the temporal difference error, which measures the difference between the
estimated value of the current state and the estimated value of the next state, combined with the
reward received for transitioning between these states. This error guides the update of the value
function.
Therefore, TD is model-free and learns directly from experience. It can also learn from incomplete
episodes, by bootstrapping.
TD can learn during each episode, it does not need to complete it.

13.2.1. Temporal Difference Learning by Sampling Bellman Equations

Recall the Bellman equations,

vπ (s) = E [Rt+1 + γvπ (St+1) |St = s, At ∼ π (St)] ,

88

13.3 Comparing MC and TD 13 MODEL-FREE PREDICTION

which can be approximated by iterating

vk+1 (s) = E [Rt+1 + γvk (St+1) |St = s, At ∼ π (St)] .

But we can also sample this, as

vt+1 (St) = Rt+1 + γvt (St+1) .

However, this is likely to be very noisy, so it is better to take a small step,

vt+1 (St) = vt (St) + αt (Rt+1 + γvt (St+1)− vt (St)) .

The red part is the target value, and δt = Rt+1 + γvt (St+1)− vt (St) is called the TD error.
We can visualize the difference between the Dynamic Programming approach, the Monte Carlo ap-
proach and the Temporal Difference approach in the following figure:

Figure 6: Backups for the different methods. DP (left), MC (center), TD (right).

In the context of reinforcement learning, bootstrapping refers to a method where the current esti-
mates are updated based on other estimated values, rather than solely on actual rewards and complete
trajectories. Sampling, on the other side, refers to learning from actual experiences or interactions
with the environment.

Method Bootstrapping Sampling
DP Yes No
MC No Yes
TD Yes Yes

Note now that the idea of TD can also be applied to action values, and we can update the value
qt (St, At) towards the estimated return Rt+1 + γq (St+1, At+1) by

qt+1 (St, At)← qt (St, At) + α (Rt+1, γqt (St+1, At+1)− qt (St, At)) .

This approach is known as SARSA, since it uses (St, At, Rt+1, St+1, At+1).

13.3. Comparing MC and TD

• TD can learn before knowing the final outcome, online after every step, while MC must wait
until the end of the episode before the return is known.

• TD can learn without of the final outcome. It can learn from incomplete sequences and it works
it continuing (non-terminating) environments. MC, on the other hand, can only learn from
complete sequences, and only works for episodic (terminating) environments.

89

13.4 Batch Monte Carlo and Temporal Difference 13 MODEL-FREE PREDICTION

• TD is independent of the temporal span of the prediction, being able to learn from single
transitions, while MC must store all predictions to update at the end of an episode.

• TD needs reasonable value estimates.

• MC returns an unbiased estimate vπ (St), while TD returns a biased estimate of vπ (St), but
the TD target has lower variance, because the total return depends on many random actions,
transitions and rewards, while the TD target depends on one random action, transition and
reward.

• In some case, TD can have irreducible bias.

• When the world is partially observable, MC would implicitly account for all the latent variables.

• The function to approximate the values may fit poorly.

• In the tabular case, both MC and TD will converge to vπ.

13.4. Batch Monte Carlo and Temporal Difference

Tabular MC and TD converge as experience keeps going to infinity and αt → 0. But what about finite
experience?

Consider a fixed batch of experience:

episode 1 :S1
1 , A1

1, R1
2, ..., S1

T1

...
episode K :SK

1 , AK
1 , RK

2 , ..., SK
T1

We can repeatedly sample each episode k ∈ [1, K] and apply MC or TD(0), which is equivalent to
sampling from an empirical model.

MC converges to the best mean-square fit for the observed returns:

K∑
k=1

Tk∑
t=1

(
Gk

t − v
(
Sk

t

))2
.

TD converges to solution of the maximum likelihood Markov model, given the data.

Example 13.1. Consider two states, A and B, with no discounting, and the following 8 episodes of
experience:

A : 0, B : 0
B : 1
B : 1
B : 1
B : 1
B : 1
B : 1
B : 0

90

13.5 Multi-Step Temporal Difference 14 MODEL-FREE CONTROL

What are v (A) and v (B)?
MC:
All episodes regarding A have 0 reward, therefore

v (A) = 0.

Episodes regarding B have 1 reward 75% of the time, so

v (B) = 0.75.

TD:
In this case, we observe that

p (St+1 = B|St = A) = 1,

that is, whenever we go through state A, then we go to state B. This means that the reward of A is
the same as the reward for B,

v (A) = v (B) = 0.75.

TD exploits the Markov property, and so it can be helpful in fully-observable environments. On
the other side, MC does not rely the Markov property, so it can be useful in partially-observable
environments.
When the data is finite or we are approximating the functions, the solutions may differ.

13.5. Multi-Step Temporal Difference

TD uses value estimates, which can be innacurate. In addition, the information can propagate quite
slowly. On the other side, the information propagates faster, but the updates are noisier. We can go
in between the two methods!
The idea is by applying TD, but instead of doing just one step, we allow it to target n steps into the
future.
The returns, in this case, are:

n = 1 G
(1)
t =Rt+1 + γv (St+1)

n = 2 G
(2)
t =Rt+1 + γRt+2 + γ2v (St+2)

...
...

n =∞ G
(∞)
t =Rt+1 + γRt+2 + ... + γT −t−1RT

As we can see, for n = 1 we obtain the regular TD, and for n =∞ we obtain MC.
The learning process is done by

v (St)← v (St) + α
(
G

(n)
t − v (St)

)
.

14. Model-Free Control

Model-Free Control refers to learning optimal policies directly from experience (i.e., from interaction
with the environment) without needing a model of the environment. In model-based control, you know
the dynamics of the environment (transition probabilities and rewards), but in model-free control, you
do not.

91

14.1 Monte-Carlo Control 14 MODEL-FREE CONTROL

14.1. Monte-Carlo Control

In the previous chapter, we focused on how to estimate the value function, given a policy. Now, we
are going to try to discover new policies using these estimations. Monte-Carlo control is based on
estimating the value of actions through sampling. This means that the agent tries out actions and
observe the outcomes, and learns from these.

When we have a model, we saw how we can use a greedy policy improvement over v (s), as

π′ (s) = arg max
a

E [Rt+1 + γv (St+1) |St = s, At = a] .

However, when we don’t have the model, we cannot use this approach. Instead, we can use a greedy
policy improvement over the action-value function, as

π′ (s) = arg max
a

qπ′ (s, a) ,

which makes the action-value function very convenient for this problem.

The idea, then, would be something like:

• Policy evaluation: Monte-Carlo policy evaluation, q ∼ qπ. That is, from state st, we try some
actions, a1, ..., ak. and estimate q (st, a1) , ..., q (st, ak).

• Policy improvement: Finding a better policy, given the value function estimated. Here, the
policy is improved by making it greedy with respect to the estimated action-value function (q).
This is:

at = arg max
i=1,...,k

q (st, ai) .

But there is also a problem with this approach! We are learning by interacting with the environment,
so we cannot sample all states s and actions a: since learning is from interaction, not all state-action
pairs may be visited, which makes it difficult to estimate their values accurately. This is particularly
a problem in environments with a large number of states or actions.

We find a trade-off between exploitation (use the information we already know) and exploration
(try new actions to discover more about the environment). One approach that increases the exploration
is the ϵ-greedy approach:

• With probability 1− ϵ, select greedy action,

a = arg max
a∈A

q (st, a) .

• With probability ϵ, select a random action.

This can be written, for each action a, as

πt (a) =

(1− ϵ) + ϵ
|A| if q (st, a) = maxb q (st, b)

ϵ
|A| otherwise

.

This approach keeps exploring and obtaining new information.

We can write the model-free control as the following algorithm:

• Repeat:

– Sample episode 1, ..., k, ... using π : {S1, A1, R2, ..., ST } ∼ π.

92

14.1 Monte-Carlo Control 14 MODEL-FREE CONTROL

– For each state St and action At in the episode, do

q (St, At)← q (St, At) + αt (Gt − q (St, At)) .

– Improve policy:
ϵ← 1

k
,

π ← ϵ− greedy (q) .

Some possibilities for αt are
αt = 1

N (St, At)
,

the inverse of the amount of possible actions in state t; or

αt = 1
k

,

the inverse of the amount of episodes considered.

14.1.1. Greedy in the Limit with Infinite Exploration (GLIE)

GLIE is a strategy to ensure that the learning algorithm both explores the environment adequately
and also converges to a near-optimal policy.

Infinite Exploration ensures that every state-action pair is explored infinitely often. In practical terms,
this means that the learning algorithm never stops trying out new actions, even if it has already found
actions that seem to give good results. This continuous exploration is crucial for making sure that
the algorithm doesn’t miss out on potentially better actions that haven’t been tried enough. Infinite
exploration is often implemented using strategies like ϵ-greedy. In other words, all state-actions are
explored infinitely many times:

lim
t→∞

Nt (s, a) =∞, ∀s, a.

Greedy in the Limit means that as the learning process continues (i.e., as the number of iterations
goes to infinity), the policy becomes increasingly greedy with respect to the estimated value function.
In other words, over time, the policy relies more and more on the knowledge it has gained about the
environment, and less on random exploration. This is typically achieved by gradually reducing the ϵ
parameter in an ϵ-greedy policy. As ϵ approaches zero, the policy becomes completely greedy, always
choosing the action that it currently believes to be the best. This means that

lim
t→∞

πt (a|s) = I
(

a = arg max
a′

qt
(
s, a′)) .

An example is using ϵ-greedy with ϵk = 1
k .

Theorem 14.1. GLIE Model-Free Control converges to the optimal action-value funtion, qr →
q∗.

93

14.2 Temporal-Difference Learning for Control 14 MODEL-FREE CONTROL

14.2. Temporal-Difference Learning for Control

We saw that TD learning has several advantages over Monte-Carlo, as it shows lower variance, it learns
online, and from incomplete sequences. Therefore, it is natural to think about using TD instead of
MC for control. Instead of estimating q (s, a) with MC, we do it with TD.

We can also update the action-value functions with SARSA, as studied in the previous section, by

qt+1 (St, At) = qt (St, At) + αt (Rt+1 + γq (St+1, At+1)− q (St, At)) .

Once we evaluate q ∼ qπ, we improve the policy with the ϵ-greedy approach.

More concretely, the following algorithm represents the approach called tabular SARSA:
1 initialize q(s,a) arbitrarily
2

3 for each episode :
4 initialize s
5 choose a from a using policy derived from q
6

7 for each step in the episode :
8 take action a
9 observe r, s’

10 choose a’ from s’ using policy derived from q
11

12 q(s,a) <- q(s,a) + alpha * [r + gamma * q(s’,a’) - q(s,a)]
13

14 s <- s’
15 a <- a’
16 until s is terminal

Theorem 14.2. Tabular SARSA converges to the optimal aciton-value function, q → q∗, if the
policy is GLIE.

Observe why it is called Tabular SARSA: we store the action-value function as a matrix of size |S|×|A|.

14.3. Off-Policy Temporal-Difference and Q-Learning

Definition 14.1. On-Policy Learning consists on learning about the behavior policy π from
experience, sampeld from π.
Off-Policy Learning consists about learning the target policy π from experiences sampled
from µ. It tries to learn counterfactually about other things the agent could do, by asking
’what if...?’.

Example 14.1. What I turned left? → New observations, rewards?

What if I played more defensively? → Do I change the win probability?

What if I continued to go forward? → How long until I bump into a wall?

The approaches seen so far are on-policy learning, while off-policy learning approaches go as follows:

• Evaluate target policy π (a|s) to compute vπ (s) or qπ (s, a).

94

14.4 Overestimation in Q-Learning 14 MODEL-FREE CONTROL

• Use a behavior policy µ (a|s) to generate actions.

Now, why is this important? It is important because it enables an agent to learn by observing
humans or other agents, and to re-use experience from old policies. In addition, the agent can learn
several policies, while only following one. Finally, it learns about the greedy policy while following an
exploratory policy.

A common approach is Q-Learning, which estimates the value of the greedy policy as

qt+1 (s, a) = qt (St, At) + αt

(
Rt+1 + γ max

a′
qt
(
St+1, a′)− qt (St, At)

)
.

Theorem 14.3. Q-Learning control converges to the optimal action-value function, q → q∗, as
long as we take each action in each state infinitely often.

Remark 14.1. Note that Q-Learning achieves convergence without the need for greedy behavior. It
works for any policy that eventually selects all actions sufficiently often.

It requires appropriately decaying step sizes, having ∑t αt =∞ and ∑t αt <∞.

One possibility is using αt = 1
tω , with ω ∈ (0.5, 1).

Example 14.2. In this picture we can observe how Q-Learning is more conservative than SARSA.
SARSA manages to find the optimal path, but this is quite close to the cliff, and is therefore dangerous.
Q-Learning finds a path that is less efficient, but is far from the cliff, minimizing the danger to fall off.

14.4. Overestimation in Q-Learning

Classical Q-Learning has potential issues, due to the fact it uses the same values to select, and to
evaluate; but these values are approximate, so the maximizing nature of the approach makes it more
likely to select overestimated values, and less likely to select understimated values, causing upward
bias.

Example 14.3. Roulette example

There are 171 actions: bet 1€ on one of 170 options, or stop.

Stops ends the episode, with 0€. All other actions have high variance reward, with negative expected
value, and betting actions do not end the episode, instead enables the agent to bet again.

In the following graph, we observe how Q-Learning overestimates the expected profit in this problem:

95

14.5 Importance of Sampling Corrections 14 MODEL-FREE CONTROL

The solution to this problem is to decouple selection from evaluation: double Q-Learning. The idea
is to store two action-value functions, q and q′, and update the reward estimates using them both:

Rt+1 + γq′
t

(
St+1, arg max

a
qt (St+1, a)

)
,

Rt+1 + γqt

(
St+1, arg max

a
q′

t (St+1, a)
)

.

At each t, we pick q or q′ (randomly or with some design) and update using one of the two previous
formulas, depending on which one we chose.

We can alse use both to act, for example by using the policy q+q′

2 .

Double Q-Learning also converges to the optimal policy under the same conditions as Q-Learning,
and solves the overestimation problem.

Moreover, this idea can be generalized to other update approaches, like double SARSA.

14.5. Importance of Sampling Corrections

Off-Policy Learning is basically trying to solve the following problem:

Given some function f , with random inputs X and a distribution d′, estimate the expectation of f (X)
under a different distribution d (the target distribution).

This can be solved by weighting the data using the ratio d
d′ :

Ex∼d [f (x)] =
∑

d (x) f (x) =
∑

d′ (x) d (x)
d′ (x)f (x) = Ex∼d′

[
d (x)
d′ (x)f (x)

]
.

The intuition is that we scale up events that are rare under d′, but common under d, and scale down
events that are common under d′, but rare under d.

Example 14.4. Estimate one-step reward, with behavior µ (a|s). Then

E [Rt+1|St = s, At ∼ π] =
∑

a

π (a|s) r (s, a) =
∑

µ (a|s) π (a|s)
µ (a|s)r (s, a) = E

[
π (At|St)
µ (At|St)

Rt+1|St = s, At ∼ µ

]
.

Therefore, when following policy µ, we can use π(At|St)
µ(At|St)Rt+1 as unbiased sample.

96

15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

15. Value approximation & Deep Reinforcement Learning

15.1. Approximate Model-Free Prediction

Tabular RL does not scale to large, complex problems, because there are too many states to store in
memory, and it is too slow to learn the values of each state separately. Therefore, we need to generalise
what we learn across states.

We can estimate values or policies in an approximate way:

1. Map states s onto a suitable feature representation ϕ (s).

2. Map features to values through a parametrised funciton vθ (ϕ (s)).

3. Update parameters θ so that vπ (s) ∼ vθ (ϕ (s)).

The goal is then to find θ that minimises the difference between vπ and vθ,

L (θ) = ES∼d

[
(vπ (S)− vθ (S))2

]
,

where d is the state visitation distribution induced by π and the dynamics p.

For this, we can use gradient descent to iteratively minimise this objective function:

∆θ = −1
2α∇θL (θ) = αES∼d [(vπ (S)− vθ (S))∇θvθ (S)] .

The evaluation of the expectation is going to be a problem, and therefore the solution is to use
stochastic gradient descent, sampling the gradient update:

∆θ = α (Gt − vθ (St))∇θvθ (St) ,

where Gt is a suitable sampled estimate of the return.

For Monte Carlo Prediction, it is

Gt = Rt + γRt+1 + γ2Rt+2 + ...

and for Temporal Difference Prediction it is

Gt = Rt + γvθ (St+1) .

At this point, it is pretty evident that we can use Deep Learning in this setting!

15.2. Deep Reinforcement Learning

Before, the feature representation was typically fixed, and the parametrized function was just a linear
mapping. We will consider more complicated non-linear mappings vθ.

A popular choice is to use DNNs to parameterize such mapping. These are known to discover use-
ful feature representation tailored to the specific task, and we can leverage extensive research on
architectures and optimisation from DL.

Therefore, we are going to parameterize vθ using a DNN. For instance, as a MLP:

vθ (S) = W2 · tanh (W1 · S + b1) + b2,

97

15.2 Deep Reinforcement Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

where θ = {W1, b1, W2, b2}.
When vθ is linear, ∇vθ is trivial to compute. However, now we have to use automatic differentiation
with back-propagation implemented in DL frameworks.

DeepMind Atari Breakthrough

DeepMind was able to develop a Deep Reinforcement Learning system that obtained human
performance in all classic Atari games. The did it by using function approximation to help scale
ip to making decisions in very large domains.

To achieve such thing, they developed the concept of Deep Q-Networks (DQN) which consists on
neural networks that are used to represents the value function, Q, policies and models, optimising a
loss function by SGD.
Therefore, we represent the state-action value function by a DQN with weights w:

Q̂ (s, a; w) ≈ Q (s, a) ,

for which we:
1. Map the input state, s, to a h-dimensional vector.
2. Apply a non-linear transformation, like tanh or ReLU .
3. Map the hidden vector to the m possible action values, as a classification problem.
4. The action with greatest approximated Q-value is selected.

It is also possible to pass each action to the network, and output its Q-value. This is useful when
there are too many actions or the action space is continuous.

DeepMind Atari Breakthrough

The performed end-to-end learning of the values Q (s, a) from the states, s, represented by the
pixels of the game of the last 4 frames of the game.
The output is the value Q (s, a) for the 18 possible button positions.
The reward is a change in the score for that step.
The network architecture and hyperparameters were the same for all the games of the console!

We saw in previous sections that Q-learning converges to the optimal Q∗ (s, a) using table lookup
representation. When working with value function approximation, we can minimize the MSE loss by
SGD using a target Q estimate instead of the true Q, like in linear value function approximation.
However, Q-learning with value function approximation can diverge from the optimal Q∗, due to
mainly the correlations between samples, and the existence of non-stationary targets.
DQN addresses these challenges by leveraging experience replay and fixed Q-targets.

98

15.3 Deep Learning aware Reinforcement Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

15.2.1. Experience Replay

To help remove correlations, we can store a dataset, called the replay buffer, D, obtained from prior
experience. In this dataset, we store at each step i, the tuple (si, ai, ri+1, si+1), that is:

• The initial state.

• The action taken.

• The reward.

• The obtained state.

Once we have the dataset, we would perform experience replay as follows:

1. Sample an experience tuple from the replay buffer:.(
s, a, r, s′) ∼ D.

2. Compute the target value for the sampled s as r + γ maxa′ Q̂ (s′, a′; w).

3. Use SGD to update the network weights:

∆w = α

(
r + γ max

a′
Q̂
(
s′, a′; w

)
− Q̂ (s, a; w)

)
∇wQ̂ (s, a; w) ,

obtained from the loss function

L (w) = 1
2

(
r + γ max

a′
Q̂
(
s′, a′; w

)
− Q̂ (s, a; w)

)2
.

15.3. Deep Learning aware Reinforcement Learning

As always, things are not all good, and there exist issues with online deep RL. We know from DL
literature that

• SGD assumes gradients are sampled IID.

• Using mini-batches instead of single samples is typically better.

However, in online RL, we perform an update on every new sample, and consecutive updates are
strongly correlated.

We can be smart in the design of the method to improve it. For instance, Experience Replay helps
with this, because we can mix online updates with updates on data sampled from the replay buffer.
This approach can reduce correlation between consecutive updates, and enables mini-batch updates,
instead of vanilla SGD.

Other ways to address this issue are:

• Use better online algorithms, like eligibility traces.

• Use better optimizers, like with momentum.

• Planning with learnt models, like Dyna-Q.

• Changing the problem setting itself, like using parallel environments.

99

15.3 Deep Learning aware Reinforcement Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

15.3.1. The Deadly Triad

If we use experience replay, we are combining:

1. Function approximation: with the mere use of a neural network to fit the action values.

2. Bootstrapping: because we bootstrap on maxa Qθ (s, a) to construct the target.

3. Off-policy learning: the replay hold data from a mixture of past policies.

When these three elements are combined, they can create a feedback loop where errors in the func-
tion approximation are compounded through bootstrapping, and the off-policy nature of the learning
algorithm can lead to poor or incorrect updates. This can cause the learning algorithm to diverge,
meaning that instead of converging to a solution, it becomes increasingly unstable over time.

Empirically, it is actually rare to see unbounded divergence. The most common scenarios are value
explosions that recover after an initial phase, a phenomenon referred to as soft-divergence.

Soft-divergence still cause value estimates to be quite poor for extended periods... But we can address
this in our RL agents using a separate target network, that is:

• Hold fixed the parameters used to compute the bootstrap targets maxa Qθ (s, a).

• Only update them periodically (every few hundreds or thousands of updates).

This way, we can break the feedback loop that sits at the heart of the deadly triad.

The general pseudocode of DQN is the following:
1 def DQN(C, alpha , gamma):
2 D = {} # Replay buffer
3 Initialize w #DQN
4 w_ = w # Target network
5 t = 0
6 Get initial state s_0
7

8 while True:
9 sample action a_t given eps - greedy policy for current Q’(s_t ,a;w)

10 Observe reward r_t
11 Observe next state s_t +1
12 D. append (s_t ,a_t ,r_t ,s_t +1)
13 sample random mini -batch of tuples (s_i ,a_i ,r_i ,s_i +1) from D
14

15 for j in mini -batch do
16 if episode terminated at step i+1 then
17 y_i = r_i
18 else
19 y_i = r_i + gamma * max_a[Q’(s_i ,a_i;w_)]
20

21 do SGD step on (y_i - Q’(s_i ,a_i;w))^2
22 update w += dw
23 t++
24 if t % C == 0:
25 w_ = w

15.3.2. Deep Double Q-Learning

We’ve said that Q-Learning has an overstimation bias, and this can be correcpted by double Q-
Learning. That is, we have two models: the current network, qθ, and the target network, qθ− . The

100

15.4 Reinforcement Learning Aware Deep Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

current network is used to select the best action, and the target network is used to evaluate the Q-
value of that action. By decoupling the action selection from its evaluation (using different networks),
DDQN mitigates the overestimation bias. When updating the Q-value for a state-action pair, the
current network determines the action that maximizes the Q-value, but the target network provides
the Q-value for that action. Periodically, the weights of the target network are updated to match
those of the current network. This lag in updating helps stabilize learning. The likelihood function in
this case becomes:

L (θ) = 1
2
(
Ri+1 + γ · qθ−

(
Si+1, arg max

a
qθ (Si+1.a)

)
− qθ (Si, Ai)

)2
.

15.3.3. Prioritized Replay

DQN samples uniformly from replays, so an idea would be to prioritize those transitions with which
the model can learn more. A basic implementation is to set a priority for sample i, |δi|, as the TD
error on the last time this transition was sampled. Then, we sample according to this priority.

15.3.4. Multi-Step Control

In the context of Deep Q-Learning (DQL), multi-step control is integrated to enhance the learning
process by considering a sequence of actions and their cumulative rewards over multiple steps, rather
than relying on single-step rewards and transitions. We define the n-step Q-Learning target as

G
(n)
t = Rt+1 + γRt+1 + ... + γn−1Rt+n + γnqθ−

(
Si+1, arg max

a
qθ (Si+1, a)

)
,

with the update rule
∆θ = α

(
G

(n)
t − qθ (St, At)

)
∇θqθ (St, At) .

The return is partially on-policy, while the bootstrap is off-policy: For a certain number of steps (n
steps), the agent follows its current policy (on-policy learning). It accumulates rewards for these steps
and uses them to update its value estimates. After these n steps, the agent uses a value estimate from
a target policy (which could be a greedy policy) for further updates. This part is off-policy because it
involves using a different policy (the target or greedy policy) for the value update.
A well-defined target: “On-policy for n steps, then act greedy”.
That’s, okay: less greedy, but still a policy improvement. This method allows the agent to explore
and learn effectively from its own policy while still benefiting from the stability and efficiency of using
a greedy policy for value estimation.

15.4. Reinforcement Learning Aware Deep Learning

15.4.1. Architectures

Much of the successes of DL have come from encoding the right inductive bias in the network structure.
To name a few examples:

• Translation invariance in image recognition led to convolutional networks.
• Long term memory led to gating in LSTMs.
• Permutation invariance/equivariance led to attention in transformers.

We should not just copy architectures designed for supervised problems, but rather design the appro-
priate architecture to encode inductive biases that are good for RL.

101

15.4 Reinforcement Learning Aware Deep Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

Dueling networks We can decompose

qθ (s, a) = vξ (s) + Aχ (s, a) ,

where θ = ξ ∪ χ, with Aχ representing the adcantage of taking action a. That is, we modify

to be:

The Dueling Network architecture splits the deep neural network into two distinct pathways at its
final layers:

• One for estimating the state value function (V (s)), which gives the value of being in a particular
state.

• The other for estimating the action advantage function (A(s, a)), which represents the additional
value of taking a particular action in that state, compared to other actions.

The outputs of these two pathways are then combined to estimate the Q-value function. This is
typically done by adding the state value to the action advantage, but with an adjustment to maintain
a zero advantage at the chosen action. The Q-value function represents the value of taking a certain
action in a given state.
The final output is a set of Q-values for each action in the given state, just like in a traditional DQN.
However, the way these Q-values are computed is different due to the dueling structure.
The advantages of this architecture over traditional ones are:

1. Improved Learning of State Values: Since one pathway is dedicated to learning the state value
function, the network can more accurately learn the value of each state, regardless of the actions
available.

2. Efficient Learning of Action Advantages: By separately estimating the advantage of each action,
the network can more effectively distinguish between the importance of the state and the impor-
tance of the individual actions within that state. This leads to more nuanced policy learning.

3. Stability and Robustness: Dueling networks can lead to more stable learning and improved
convergence properties. By disentangling the estimation of state values and action advantages,
the network reduces the potential for harmful interference between these two aspects of the
learning process.

4. Better Policy Evaluation and Generalization: The architecture allows for better generalization
across actions without compromising the learning of the state value. It can also provide a more
accurate evaluation of the policy.

102

15.4 Reinforcement Learning Aware Deep Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

5. Handling Environments with Many Similar Actions: In situations where many actions yield
similar results (e.g., in video games where moving left or right might have similar outcomes), a
dueling network can effectively learn the value of the state, which is more significant than the
specific action taken.

15.4.2. Capacity

In supervised DL, we often find that the more data and compute we have, the better performance we
can get, since the loss is easier to optimise, there is less interference, we can have bigger models, etc.
But this phenomenon is not found the same way in reinforcement learning, where larger network do
typically perform better overall, but become more susceptible to the deadly triad.

15.4.3. Generalisation

The deadly triad also shows that generalization in RL can be tricky... Consider the problem of value
learning, in presence of sharp discontinuities of vπ. Deep neural networks, used in deep reinforce-
ment learning (like DQN or policy gradient methods), might struggle to approximate functions with
sharp discontinuities accurately. This is because neural networks, by their nature, tend to interpolate
smoothly between points in their training data. For example:

TD learning with DL approximation leads to what’s called leakage propagation, that is, the dis-
continuities spread their values to undesired areas of the space:

103

15.4 Reinforcement Learning Aware Deep Learning15 VALUE APPROXIMATION & DEEP REINFORCEMENT LEARNING

104

References References

References

[1] Tom Dupuis. Machine learning. Lecture Notes.

[2] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks.

105

	Deep Learning
	Introduction
	AI History

	Machine Learning Basics
	Linear Algebra Basics
	Probability Basics
	Machine Learning Basics

	Deep Neural Networks
	Perceptron
	Multi-layer perceptron
	Cost Functions
	Choice of cost function
	Cross-entropy

	Why deep NN?
	Gradient-based Learning
	Back-propagation

	Deep Neural Networks: Optimization and Regularization
	Optimization
	Solving Bad Convergence

	Initialization and Normalization
	Random Initialization
	Input normalization

	Regularization
	L2 Regularization (or Ridge)
	L1 regularization (or Lasso)
	Early Stopping
	Dropout
	Data Augmentation

	Vanishing Gradients
	Residual network
	Stochastic Depth

	Double Descent

	Convolutional Neural Networks
	Introduction
	History of CNNs

	Convolutions
	Fixed Kernels Weights
	Learned Kernel Weights
	Receptive fields
	11 Convolution

	Padding, Stride, Pooling
	The Sides Problem
	Padding
	Stride
	Pooling

	CNNs
	Object Detection Problem
	Semantic Segmentation

	Data and Transfer
	Data Augmentation
	Transfer Learning

	Self-Supervised Learning (SSL)

	Recurrent Neural Networks
	Introduction
	Recurrent Neural Networks
	Direct Propagation
	Recurrent Neural Networks with output recurrence
	Recurrent Neural Networks with unique output
	More architectures
	Bi-Directional Recurrent Neural Network
	Deep Recurrent Neural Network

	Recurrent Neural Networks Training
	Long-Short Term Memory (LSTM) and Gated Recurrent Units (GRU)
	LSTM
	GRU

	Deep Generative Modelling
	Variational Auto-Encoders (VAE)
	Auto-Encoders
	Variational Auto-Encodersi

	Generative Adversarial Networks
	Other Approaches
	Normalizing Flows
	Pixel RNN

	Denoising Diffusion Models
	Transformers
	Attention
	Architecture
	The first big takeover: Language Modeling
	The second big takeover: Computer Vision
	The third big takeover: speech
	The fourth big takeover: Reinforcement Learning
	The Transformer's unification of communities
	A note on efficient transformers

	Reinforcement Learning
	Introduction
	Definition and components
	Maximising the value by taking actions
	Markov Decision Processes
	Policies
	Value Functions
	Value Function Approximations

	Model
	Agent categories
	Subproblems of RL

	Markov Decision Processes
	Solving Reinforcement Learning Problems with Bellman Equations
	Dynamic Programming
	Policy Evaluation
	Policy Improvement

	Extensions to Dynamic Programming
	Asynchronous Dynamic Programming

	Model-Free Prediction
	Monte Carlo Algorithms
	Monte Carlo Policy Evaluation
	First-Visit Monte Carlo Policy Evaluation
	Every-Visit Monte Carlo Policy Evaluation
	Incremental Monte Carlo Policy Evaluation

	Temporal Difference Learning
	Temporal Difference Learning by Sampling Bellman Equations

	Comparing MC and TD
	Batch Monte Carlo and Temporal Difference
	Multi-Step Temporal Difference

	Model-Free Control
	Monte-Carlo Control
	Greedy in the Limit with Infinite Exploration (GLIE)

	Temporal-Difference Learning for Control
	Off-Policy Temporal-Difference and Q-Learning
	Overestimation in Q-Learning
	Importance of Sampling Corrections

	Value approximation & Deep Reinforcement Learning
	Approximate Model-Free Prediction
	Deep Reinforcement Learning
	Experience Replay

	Deep Learning aware Reinforcement Learning
	The Deadly Triad
	Deep Double Q-Learning
	Prioritized Replay
	Multi-Step Control

	Reinforcement Learning Aware Deep Learning
	Architectures
	Capacity
	Generalisation

