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2 PRELIMINARIES

1 Introduction

Graph-structured data is at the heart of complex systems and plays a major role in our daily life, science
and economy. Examples of this data are the cooperation between billions of individuals, or communication
infraestructures with billions of cell phones, computers and satellites, the interactions between thousands of
genes and metabolites within our cells, and so on.

Therefore, understanding its mathematical foundations, description, prediction, and eventually being able to
control them is one of the major scienti�c challenges of the 21st century.

2 Preliminaries

2.1 Graph Theory Preliminaries

A graph is a pair G = (V,E), where V is the set of vertices and E ⊂ V × V is the set of edges. Usually, we
denote |V | = n and |E| = m.

There are di�erent types of graphs:

� Undirected: (u, v) ∈ E =⇒ (v, u) ∈ E. That is, the edges goes in both directions.

� Directed: (u, v) ∈ E ̸ =⇒ (v, u) ∈ E. That is, the edges have direction, and it is possible that an edge
goes from u to v, but not the other way.

� Weigthed vertices: the vertices have a weight. That is, there is a function wv : V → R.

� Weigthed edges: the edges have a weight. That is, there is a function we : E → R.

� Labeled vertices: the vertices have a label, Lv : V → L, where L is the set of labels.

� Labeled edges: the edges have a label, Le : E → L.

� Bipartite: a graph G = (V,E) is bipartite if there is a partition of the vertices, V = V1 ∪ V2, such that
V1 ∩ V2 = ∅ and E = {(vi, vj) |vi ∈ V1, vj ∈ Vj}. That is, the vertices in V1 only connect to vertices in V2,
and viceversa.

� k-Partite: a graph G = (V,E) is k-partite if there is a k-partition of the vertices, V = V1 ∪ V2 ∪ ... ∪ Vk,
such that Vi ∩ Vj = ∅,∀i ̸= j and the is no edge e = (u, v) such that u, v ∈ Vi, for the same i.

� Multigraph or multidigraph: in this case, there can be several edges between two vertices. For this,
we de�ne the edges as a separate set E, and a function r : E → V × V , that assigns the vertices related
by that edge.

� Hypergraph: in this case, E ⊂ 2V . That it, the edges can relate 0 or more vertices. In this case, it is
more appropriate to interpret E as a set of classes or hierarchies, rather than edges.

� Complete: a graph is complete if E = V × V .

Some examples are:
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2.1 Graph Theory Preliminaries 2 PRELIMINARIES

Continuing with de�nitions, let G = (V,E) be a graph (directed or undirected). Let d+i and d−i denote the
number of edges coming out and coming to vi, respectively. The degree of vi is

di = d+i + d−i .

Note that it counts double for undirected graphs.

Now, let N+
i and N−

i the set of successors and predecessors of vi, respectively. Then, the set of neighbors of
vi is

Ni = N+
i +N−

i .

A path between two vertices, u, v ∈ V , denoted u ⇝ v, is a sequence of vertices (u = v0, v1, ..., vk−1, vk = v),
where (vi−1, vi) ∈ E,∀i = 1, ..., k. The length of a path, L (u⇝ v), is the number of edges in the cycle, that is,
k.

A cycle is a path from a vertex to itself, u⇝ u.

The distance between two nodes, d (u, v), is the shortest path length between them:

d (u, v) = min
u⇝v

L (u⇝ v) .

The eccentricity of a node, ecc (u), is the greatest distance between u and any other vertex in the graph:

ecc (u) = max
v∈V

d (u, v) .

Note that this could be in�nity if we cannot reach some node from u. Usually, we consider only reachable nodes,
because this can give us information about the graph, but a value of in�nity is not very informative.

The diameter of a graph, diam (G), is the greatest distance between two nodes in the graph:

diam (G) = max
u,v∈V

d (u, v) = max
u∈V

ecc (u) .

The radius of a graph, rad (G), is the minimum eccentricity of any vertex in the graph:

rad (G) = min
u∈V

ecc (u) .

The center of a graph, C (G), is the set of all vertices of minimum eccentricity, i.e., the graph radius:

C (G) = {u : ecc (u) = rad (G)} .

Example 2.1. Compute the diameter, radius and center of the following graphs:

The solution is the following:
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2.1 Graph Theory Preliminaries 2 PRELIMINARIES

In each node, we show its eccentricity. The diameter is 6, the radius is 3 and the center is c (in blue).

Solution:

In this case, the diameter is 5, the radius is 3 and the center is {c, h}.

A partial graph of G = (V,E) is a graph G′ = (V,E′), where E′ ⊂ E.

A subgraph of G = (V,E) is a graph G′ = (V ′, E′) where V ′ ⊂ V and E′ ⊂ E. Note that partial graphs are
also subgraphs.

A graph G = (V,E) is said to be connected if, and only if, ∀u, v ∈ V,∃u⇝ v.

A (strongly) connected component of G = (V,E) is a subgraph Gcc = (Vcc, Ecc), where ∀u, v ∈ Vcc,∃u ⇝
v ∈ Vcc. That it, a connected subgraph. It is called strongly when the paths are directed.

A graph G = (V,E) is a tree if, and only if, G is a connected graph without cycles. In this case, the graph has
m = n− 1 edges.

A graph G = (V,E) is a forest if, and only if, all connected components of G are trees.

2.1.1 Breadth First Search (BFS)

BFS is a method to traverse the nodes of a graph, by starting at one node and traversing all its neighbours.
Then, all neighbours of its neighbours, and so on.

For this, we use a FIFO queue. The algorithm is:
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2.1 Graph Theory Preliminaries 2 PRELIMINARIES

1 procedure BFS(G=(V,E), r)

2 Q <- emptyset

3 enqueue(Q,r)

4 r.label = True

5

6 while Q is not empty do

7 v <- dequeue(Q)

8 for neig in neighbours(v) do

9 if not neig.label then

10 enqueue(Q,neig)

11 neig.label = True

12 end if

13 end for

14 end while

15 end procedure

Example 2.2. Apply BFS in the following graph, starting at node A.

Q=[A]. We visit A's neighbours:

Q=[F,G]. Now, by lexycographical order, we visit F's neighbours:

8



2.1 Graph Theory Preliminaries 2 PRELIMINARIES

Q=[G,B,E]. Now, we visit G's neighbours. Since it has no new unvisited neighbours, there is no change.

Q=[B,E]. Now, we visit B's neighbours:

Q=[E,C]. Now, we visit E's neighbours:

Q=[C,D]. Everything is visited, so the queue will be slowly emptied!
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2.1 Graph Theory Preliminaries 2 PRELIMINARIES

2.1.2 Depth First Search (DFS)

In the case of DFS, the objective is also to traverse the whole graph. The di�erence is that in this case we try
to go as deep as we can in the graph before visiting more neighbours.

It can be implemented with a stack, let it be a explicit stack, or an implicit one.

The implementation with an explicit stack is the following:

1 procedure DFS(G=(V,E),r)

2 S <- emptyset

3 push(S,r)

4 while S is not empty do

5 v <- pop(S)

6 if not v.label then

7 v.label = true

8 for neig in neighbours(v) do

9 push(S, neig)

10 end for

11 end if

12 end while

13 end procedure

The implementation with an implicit stack is recursive, and is as follows:

1 procedure BFS(G=(V,E), r)

2 Q <- emptyset

3 enqueue(Q,r)

4 r.label = True

5

6 while Q is not empty do

7 v <- dequeue(Q)

8 for neig in neighbours(v) do

9 if not neig.label then

10 enqueue(Q,neig)

11 neig.label = True

12 end if

13 end for

14 end whileDFS *(G=(V,E), r)

15 r.label = true

16 for neig in neighbours(r) do

17 if not neig.label then

18 DFS*(G, neig)

19 end if

20 end for

21 end procedure

Example 2.3. Let's repeat the example, now using DFS:
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2.1 Graph Theory Preliminaries 2 PRELIMINARIES

2.1.3 Greaph Representations

A graph, G = (V,E), with n vertices and m edges can be encoded using di�erent structures:

� Adjacency matrix: a matrix A ∈ Mn×n, de�ned by

Aij =

{
1 if, (vi, vj) ∈ E

0 otherwise
.

The adjacency matrix is symmetric for undirected graphs.

� Adjacency list: a list L of length n in which each vertex holds a list of its neighbours:

∀u ∈ V,Lu = {v| (u, v) ∈ E} .

If G is directed, the choice of the direction depends on the analytic needs.

� Incidence matrix: a matrix B ∈ Mn×m, de�ned by

Bij =

{
1 if ej = (vi, vk) ∈ E

0 otherwise
.

2.1.4 Exercises

1. Using graph traversal algorithms, propose an algorithm that computes the number of edges between a
given vertex and all other vertices.
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1 procedure n_edges(G=(V,E), r)

2 Q <- emptyset

3 enqueue(Q,r)

4 r.n_edges = 0

5

6 while Q is not empty do

7 v <- dequeue(Q)

8 for neig in neighbours(v) do

9 if not neig.n_edges then

10 enqueue(Q,neig)

11 neig.n_edges = v.n_edges + 1

12 end if

13 end for

14 end while

15 end procedure

2. Given the following cycles with even and odd lengths (with the distances or depths from the grey vertex),
what do you think about the case of graphs with an odd cycle (in number of edges)? Is this a characteristic
property? State the general case.

Proposition: a graph contains a cycle C with an odd number of edges if, and only if, ∃ (x, y) ∈
E|depth (x) = depth (y).

Proof : �rst, we know that all edges connect vertices of 'neighbouring' depths. That it, ∀ (x, y) ∈ E, it
holds |depth (x)− depth (y)| ≤ 1.

[ =⇒ ] By reduction ad absurdum, seeking a contradiction, suppose that ∀ (x, y) ∈ C, with depth (x) ̸=
depth (y). This means that depth (x) = depth (y)± 1. Therefore, there is, along the cycle, a node of even
depth, followed by a node of odd lenght, and so on. When we close the cycle, the �nal node is the inicial
one, so its depth is 0 (even). Therefore, we need an even number of edges, to conserve the parity.

[ ⇐= ] If there is an edge (x, y) ∈ E with depth (x) = depth (y), then we can consider the path tree that
was used to annotate the depths. In this tree, x and y have a �rst ancestor z in common, from which
we can form an odd cycle of size 2 · (depth (x)− depth (z)) + 1 by adding the edge (x, y) to this subtree
starting at z.

3. Propose an algorithm that determines if a graph contains an odd cycle.

1 procedure hasOddCycle(G=(V,E))

2 v <- a vertex from V

3 depths <- n_edges(G,v) #from the first exercise

4

5 for (u,v) in E do

6 if depth[u] == depth[v] then

7 return True

8 end if

9 end for

10 end procedure

4. In a bipartite graph, can there be a cycle with an odd number of edges? Is this a characteristic property?

No, it is not possible!

Proposition: A graph is bipartite if, and only if, all cycles are of even size.

[ =⇒ ] If the graph is bipartite, any path alternates between each vertex of each partition to create a cycle
ending by the initial vertex. Therefore, all cycles must be of even size.

[ ⇐= ] Consider the partition of vertices with even depth V1, and the partition of vertices with odd depth
V2.

Since there is no odd cycle, then, from question 2, we know that ∀ (u, v) ∈ E it is depth (u) = depth (v)±1.
Therefore, the graph is bipartite.
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2.1 Graph Theory Preliminaries 2 PRELIMINARIES

5. Propose an algorithm that allows to determine if a graph is bipartite. Test your algorithm in the following
graph. Is it bipartite? Justify your answer.

The algorithm is the same as in exercise 3, because of exercise 4.

The proposed graph is clearly not bipartite, because there are several odd cycles.

6. Graph coloring is a way of coloring the vertices of a graph in such a way that no two adjacent vertices
share the same color. A 2-colorable graph is a graph that can be colored with only 2 colors.

(a) What is the link with the previous exercise? Justify your answer.
Proposition: a graph is 2-colorable if, and only if, it is bipartite.
Proof : [ =⇒ ] If it is 2-colorable, with colors red and blue. Then we take V1 = {u|color (u) = blue}
and V2 = {u|color (u) = red}. G is clearly bipartite with this partition.
[ ⇐= ] If it is bipartite, with partition V1 and V2, then we can color all nodes in V1 in blue, and all
nodes in V2 in red. The graph is 2-colorable.

(b) We want to write an algorithm, inspired by DFS search, which takes as input a graph, G = (V,E),
and which returns a pair (result, color) where result is True if the graph is colorable, False otherwise,
and color is a dictionary associating a color 0 or 1 to each vertex. This algorithm should stop as
soon as possible when the graph is not 2-colorable.

1 procedure coloring(G=(V,E), r)

2 color <- {r: 0}

3 stack <- emptyset

4 push(stack , r)

5

6 while stack is not empty do

7 v <- pop(stack)

8 for neig in neighbours(v) do

9 if neigh is not in color.keys then

10 push(stack , neigh)

11 color[neig] = 1 - color[v]

12 elif color[neig] = color[v] then

13 return False , color

14 end if

15 end for

16 end while

17 return True , color

18 end procedure

7. Compute the shortest path in the following graph using Dijkstra's algorithm, starting at A:

1 procedure dijkstra(G=(V,E), r)

2 dist <- {r:0}

3 P <- emptyset

4

5 for v in V-{r} do

6 dist[v] = infinity

7 end for

8

9 while V-P is not empty do

10 w <- select(v in V-P and dist[v]=min_u dist[u])

11 P <- P union {w}

12 for neig in neighbours(w)-P do

13 if dist[w]+ weight(neig ,w) < dist[neig] then

14 dist[neig] <- dist[w]+wight(neig ,w)

15 end if

16 end for

17 end while

18 end procedure

13



2.1 Graph Theory Preliminaries 2 PRELIMINARIES

We start with: dist =
A B C D E F G

0 ∞ ∞ ∞ ∞ ∞ ∞
, and P = ∅.

Now, w = A and P = {A}. We update dist =
A B C D E F G

0 ∞ ∞ ∞ ∞ 3 1
.

Now, w = G and P = {A,G}. We update dist =
A B C D E F G

0 ∞ ∞ ∞ 3 2 1
.

Now, w = F and P = {A,F,G}. We update dist =
A B C D E F G

0 6 ∞ ∞ 3 2 1
.

Now, w = E and P = {A,E, F,G}. We update dist =
A B C D E F G

0 6 4 8 3 2 1
.

Now, w = C and P = {A,C,E, F,G}. We update dist =
A B C D E F G

0 6 4 6 3 2 1
.

Now, w = B and P = {A,B,C,E, F,G}. dist does not change.
Finally, w = D and P = {A,B,C,D,E, F,G}. dist does not change.

8. Given the following graphs:

(a) Give the di�erent representations of these graphs.

A1 =

0 1 2 3 4 5
0
1
2
3
4
5


0 1 0 0 1 1
1 0 1 1 0 1
0 1 0 1 0 1
0 1 1 0 0 1
1 0 0 0 0 1
1 1 1 1 1 0


,L1 =

0 : {1, 4, 5}
1 : {0, 2, 3, 5}
2 : {1, 3, 5}
3 : {1, 2, 5}
4 : {0, 5}

5 : {0, 1, 2, 3, 4}

B1 =

01 04 05 12 13 15 23 25 35 45
0
1
2
3
4
5


1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 1 0 0 0 0
0 0 0 1 0 0 1 1 0 0
0 0 0 0 1 0 1 0 1 0
0 1 0 0 0 0 0 0 0 1
0 0 1 0 0 1 0 1 1 1
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A2 =

0 1 2 3 4 5
0
1
2
3
4
5


0 1 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 1
0 0 0 1 0 0
1 1 0 0 0 0
0 0 0 0 1 0


, L2 =

0 : {1, 4}
1 : {5}
2 : {3, 5}
3 : {3}
4 : {0, 1}
5 : {4}

,

B1 =

01 04 15 23 25 33 40 41 54
0
1
2
3
4
5


1 1 0 0 0 0 2 0 0
2 0 1 0 0 0 0 2 0
0 0 0 1 1 0 0 0 0
0 0 0 2 0 3 0 0 0
0 2 0 0 0 0 1 1 2
0 0 2 0 2 0 0 0 1


(b) Compute A2, A3. What does Ar

ij represents?
Ar

ij represents the number of paths of length r from node i to node j.

(c) What is the complexity of Ar? Is it possible to reduce it?
Computing Ar is O

(
rn3
)
, since it requires r products of complexity O

(
n3
)
.

However, we can reuse some results to reduce the complexity:

� If r is even, we can do Ar =
(
A

r
2

)2
.

� If r is odd, we can do Ar = A
(
A

r−1
2

)2
.

Therefore, we can obtain Ar in O
(
log r · n3

)
.

2.2 Linear Algebra Preliminaries

A norm is a function f that measures the size of a vector. It must satisfy the following properties:

� f (x) = 0 ⇐⇒ x = 0.

� Linear on scale factors:
f (αx) = |α| f (x) ,∀α ∈ R.

� Triangle inequality:
f (x+ y) ≤ f (x) + f (y) .

A widely use family of norms are the p-norms:

∥x∥p = p

√∑
i

|xi|p,

with the most common one being the Euclidean norm, for p = 2:

∥x∥ =

√∑
i

x2
i .

The determinant of a square matrix is equal to the hypervolume of the parallelotope de�ned by the vectors
of the matrix. It is 0 if, and only if, the set of vectors is colinear.

The determinant can be used for many things:

� We can represents linear systems with matrices as Y = AX, and there are many methods to solve this
e�ciently.
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� With the determinant we can compute the characteristic polynomial of A, whose roots are the eigen-
values of A.

Some properties of the determinant are:

� |I| = 1, where I is the identity matrix.

� |A| = 0 if A is singular (not invertible).

� |AB| = |A| |B|.

�
∣∣AT

∣∣ = |A|.

� |cA| = cn |A|, where n is the dimension of A.

A square matrix, A, is invertible (non-singular, non-degenerate), with inverse denoetd A−1, if ∃B such that

AB = BA = I,

in this case, A−1 = B.

Proposition 2.1. For a square matrix, A, the following properties are equivalent:

� A is invertible.

� All vectors in A are linearly independent.

� |A| ≠ 0.

� AT is invertible.

� 0 is not an eigenvalue of A.

Properties of the inverse:

�
(
A−1

)−1
= A.

�
(
AT
)−1

=
(
A−1

)T
.

� (AB)
−1

= B−1A−1.

� (cA)
−1

= 1
cA

−1 for c ̸= 0.

�
∣∣A−1

∣∣ = 1
|A| .

An eigenvector or characteristic vector of a linear transformation, T , is a non-zero vector that changes by a
escalar factor, λ, when transformed by T . That is, v is an eigenvector of the linear transformation T if

T (v) = λv.

There is a direct correspondence between n×n matrices and linear transformation in the n-dimenstional vector
space into itself. That is, every linear transformation T can be represented as a matrix AT (the matrix depends
on the chosen base). Therefore, we can say that AT has an eigenvector v if

AT v = λv.

The scale factors of the eigenvectors are called eigenvalues.

We can �nd the eigenvalues by solving a polynomial function on λ called the characteristic polynomial of
AT :

(A− λI) v = 0.

16
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Now, this equation has non-zero solution if, and only if,

|A− λI| = 0.

Therefore, we can compute |A− λI| and �nd all values of λ that makes it equal to 0.

Once we have the eigenvalues, we can use them to �nd the corresponding eigenvectors.

Example 2.4. Compute the eigenvalues and eigenvectors of A =

(
2 1
1 2

)
.

|A− λI| =
∣∣∣∣ 2− λ 1

1 2− λ

∣∣∣∣ = (2− λ)
2 − 1 = λ2 − 4λ+ 3.

This has as solutions

λ =
4±

√
16− 12

2
=

4± 2

2
= 2± 1.

Therefore, we have λ1 = 1, λ2 = 3.

To �nd the eigenvectors, we solve

Av = λv ⇐⇒

{
2x+ y = λx

x+ 2y = λy
.

For λ1 = 1, it is {
2x+ y = x

x+ 2y = y
⇐⇒ x = −y,

so the eigenvector associated to λ1 = 1 is

vλ1 =

(
t
−t

)
.

For λ2 = 3, it is {
2x+ y = 3x

x+ 2y = 3y
⇐⇒ x = y,

so the eigenvector associated to λ2 = 3 is

vλ2 =

(
t
t

)
.

We call the algebraic multiplicity, ti, of the eigenvalue λi to its multiplicity as root of the characteristic
polynomial:

P (A) = |A− λI| = (λ− λ1)
t1 (λ− λ2)

t2 · ... · (λ− λk)
tk .

Note that A can have at most n distinct eigenvalues, although some of them may be complex.

Proposition 2.2. If the eigenvalues of A are all di�erent, then the corresponding eigenvectors are
linearly independent.

The eigenspace of an eigenvalue, λ, is the spave generated by the eigenvectors associated to λ.

The dimension of the eigenspace of λ is the geometric multiplicity of λ. The geometric multiplicity of an
eigenvalue is, at most, its algebraic multiplicity.

Example 2.5. Let's get some eigenspaces:

17
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A =

 −1 1 0
−4 3 0
1 0 2

 , so

|A− λI| =

∣∣∣∣∣∣
−1− λ 1 0
−4 3− λ 0
1 0 2− λ

∣∣∣∣∣∣ = (−1− λ) (3− λ) (2− λ) + 4 (2− λ)

= (2− λ) [(−1− λ) (3− λ) + 4] = (2− λ)
(
−3 + λ− 3λ+ λ2 + 4

)
=(2− λ)

(
λ2 − 2λ+ 1

)
=(2− λ) (λ− 1)

2
.

This has roots λ1 = 1, with algebraic multiplicity 2, and λ2 = 2, with algebraic multiplicity 1.

Now, we get the eigenvectors associated to them:

Av = λv ⇐⇒


−x+ y = λx

−4x+ 3y = λy

x+ 2z = λz

.

For λ1 this is 
−x+ y = x

−4x+ 3y = y

x+ 2z = z

⇐⇒


y = 2x

−4x+ 3y = y

x = −z

,

so vλ1 =

 t
2t
−t

, with dimension 1 (it could be 2).

For λ2 this is 
−x+ y = 2x

−4x+ 3y = 2y

x+ 2z = 2z

⇐⇒


y = 3x

−4x = −y

x+ 2z = λz

⇐⇒


x = 0

y = 0

2z = 2z

,

so vλ2
=

 0
0
t

, with dimension 1 (it could not be di�erently).

B =

 4 6 0
−3 −5 0
−3 −6 1

, so

|B − λI| =

∣∣∣∣∣∣
4− λ 6 0
−3 −5− λ 0
−3 −6 1− λ

∣∣∣∣∣∣ = (4− λ) (−5− λ) (1− λ) + 18 (1− λ)

= (1− λ) [(4− λ) (−5− λ) + 18] = (1− λ)
(
−20− 4λ+ 5λ+ λ2 + 18

)
=(1− λ)

(
λ2 + λ− 2

)
= (1− λ)

2
(−2− λ) .

This has roots λ1 = 1, with algebraic multiplicity 2, and λ2 = −2, with algebraic multiplicity 1.

Now, we get the eigenvectors associated to them:

Av = λv ⇐⇒


4x+ 6y = λx

−3x− 5y = λy

−3x− 6y + z = λz

.
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For λ1 = 1, we have 
4x+ 6y = x

−3x− 5y = y

−3x− 6y + z = z

⇐⇒


x = −2y

z = z

.

Therefore, the eigenspace associated to λ1 is

E (λ1) =


 −2t

t
0

 ,

 0
0
u

 .

For λ2 = 2, we have 
4x+ 6y = −2x

−3x− 5y = −2y

−3x− 6y + z = −2z

⇐⇒


x = −y

−3y + z = −2z

⇐⇒


x = −y

y = z

.

Thus, the eigenspace associated to λ2is

E (λ2) =

 −t
t
t

 .

C =

 1 −1 0
−1 2 1
0 1 1

 ,

|C − λI| =

∣∣∣∣∣∣
1− λ −1 0
−1 2− λ 1
0 1 1− λ

∣∣∣∣∣∣ = (1− λ)
2
(2− λ)− 2 (1− λ)

= (1− λ) [(1− λ) (2− λ)− 2]

= (1− λ)
(
2− λ− 2λ+ λ2 − 2

)
=(1− λ)

(
λ2 − 3λ

)
=(1− λ) (λ− 3)λ.

Cv = λv ⇐⇒


x− y = λx

−x+ 2y + z = λy

y + z = λz

.

λ1 = 0: 
x− y = 0

−x+ 2y + z = 0

y + z = 0

⇐⇒

{
x = y

y + z = 0
⇐⇒

{
x = y

y = −z
,

so

E (λ1) =

 t
t
−t

 .

λ2 = 1: 
x− y = x

−x+ 2y + z = y

y + z = z

⇐⇒


y = 0

−x+ z =

z = z

⇐⇒

{
y = 0

x = z
,

so

E (λ2) =

 t
0
t

 .
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λ3 = 3: 
x− y = 3x

−x+ 2y + z = 3y

y + z = 3z

⇐⇒

{
y = −2x

y = 2z
,

so

E (λ3) =

 −t
2t
t

 .

D =

 1 −1 4
3 2 −1
2 1 −1

 ,

|D − λI| =

∣∣∣∣∣∣
1− λ −1 4
3 2− λ −1
2 1 −1− λ

∣∣∣∣∣∣
=(1− λ) (2− λ) (−1− λ) + 12 + 2− 8 (2− λ) + 1− λ+ 3 (−1− λ)

=
(
2− 3λ+ λ2

)
(−1− λ)− 4 + 4λ

=− 2− 2λ+ 3λ+ 3λ2 − λ2 − λ3 − 4 + 4λ

=− λ3 + 2λ2 + 5λ− 6

To obtain the roots, we can use Ru�ni:

-1 2 5 -6
1 -1 1 6

-1 1 6 0

So λ1 = 1 is a root and we have now −λ2 + λ+ 6 = 0, obtaining

λ =
−1±

√
1 + 24

−2
=

−1± 5

−2
,

and we get λ2 = −2 and λ3 = 3.

Dv = λv ⇐⇒


x− y + 4z = λx

3x+ 2y − z = λy

2x+ y − z = λz

.

λ1 = 1: 
x− y + 4z = x

3x+ 2y − z = y

2x+ y − z = z

⇐⇒


y = 4z

3x+ 3z = 0

2x+ 2z = 0

⇐⇒

{
y = 4z

x = −z
.

Then, E (λ1) =

 −t
4t
t

 .

λ2 = −2: 
x− y + 4z = −2x

3x+ 2y − z = −2y

2x+ y − z = −2z

⇐⇒


3x− y + 4z = 0

3x+ 4y − z = 0

2x+ y + z = 0

⇐⇒

{
5y − 5z = 0

2x+ y + z = 0

⇐⇒

{
y = z

2x+ 2y = 0
⇐⇒

{
y = z

x = −y
.
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Then, E (λ2) =

 −t
t
t

.
λ3 = 3: 

x− y + 4z = 3x

3x+ 2y − z = 3y

2x+ y − z = 3z

⇐⇒


−2x− y + 4z = 0

3x− y − z = 0

2x+ y − 4z = 0

⇐⇒

{
−2x− y + 4z = 0

5x− 5z = 0

{
y = 2z

x = z
.

Then, E (λ3) =

 t
2t
t

.
E =

 6 −2 2
−2 3 −1
2 −1 3

 ,

|E − λI| =

∣∣∣∣∣∣
6− λ −2 2
−2 3− λ −1
2 −1 3− λ

∣∣∣∣∣∣
=(6− λ) (3− λ)

2
+ 4 + 4− 4 (3− λ)− (6− λ)− 4 (3− λ)

= (6− λ)
(
9− 6λ+ λ2

)
+ 2− 8 (3− λ) + λ

=54− 36λ+ 6λ2 − 9λ+ 6λ2 − λ3 − 22 + 8λ+ λ

=− λ3 + 12λ2 − 36λ+ 32.

Again, we can use the Ru�ni rule:

-1 12 -36 32
2 -2 20 -32

-1 10 -16 0

So λ1 = 2 is a root, and we now have −λ2 + 10λ− 16 = 0, which gives us

λ =
−10±

√
100− 64

−2
=

−10± 6

−2
= 5± 3.

Therefore, λ1 is a double root and the other root is λ2 = 8.

Ev = λv ⇐⇒


6x− 2y + 2z = λx

−2x+ 3y − z = λy

2x− y + 3z = λz

.

λ1 = 2: 
6x− 2y + 2z = 2x

−2x+ 3y − z = 2y

2x− y + 3z = 2z

⇐⇒


4x− 2y + 2z = 0

−2x+ y − z = 0

2x− y + z = 0

⇐⇒

{
4x− 2y + 2z = 0

2x− y + z = 0

⇐⇒ 2x− y + z = 0

If x = 0: y = z.

If x = t ̸= 0: −y + z = −2t, working for y = t and z = −t.
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So

E (λ1) =


 0

t
t

 ,

 t
t
−t

 .

λ2 = 8: 
6x− 2y + 2z = 8x

−2x+ 3y − z = 8y

2x− y + 3z = 8z

⇐⇒


−2x− 2y + 2z = 0

−2x− 5y − z = 0

2x− y − 5z = 0

⇐⇒

{
−3y − 3z = 0

2x− y − 5z = 0

⇐⇒

{
y = −z

2x− 4z = 0
⇐⇒

{
y = −z

x = 2z
.

Therefore,

E (λ2) =

 2t
−t
t

 .

F =

 0 −1 −1
1 2 1
1 1 2

 ,

|F − λI| =

∣∣∣∣∣∣
−λ −1 −1
1 2− λ 1
1 1 2− λ

∣∣∣∣∣∣
=− λ (2− λ)

2
����−2 + 2����−λ+ λ+ 2− λ

=(2− λ) [−λ (2− λ) + 1]

= (2− λ)
(
−2λ+ λ2 + 1

)
=(2− λ) (1− λ)

2
.

One root is λ1 = 1 with algebraic dimension 2, and λ2 = 2 with algebraic dimension 1.

Fv = λv ⇐⇒


−y − z = λx

x+ 2y + z = λy

x+ y + 2z = λz

.

λ1 = 1: 
−y − z = x

x+ 2y + z = y

x+ y + 2z = z

⇐⇒
{
x+ y + z = 0

If x = 0: y = −z.

If x = t ̸= 0: y + z = −t. This works for y = t, z = −2t.

Therefore,

E (λ1) =


 0

t
−t

 ,

 t
t

−2t

 .

λ2 = 2: 
−y − z = 2x

x+ 2y + z = 2y

x+ y + 2z = 2z

⇐⇒


−y − z = 2x

x+ z = 0

x+ y = 0

⇐⇒

{
x = −z

x = −y
.

⇐⇒ 2x− y + z = 0
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So

E (λ2) =

 t
−t
−t

 .

Another way to represent eigenvalues and eigenvectors is

AV = V Λ,

where V = [v1, ..., vn] is the matrix formed by putting each eigenvector as a column, and

Λ =


λ1

λ2

. . .
λn


is the diagonal matrix formed by all eigenvalues.

A matrix A is diagonalizable if there exist n linearly independent eigenvectors. That is, if the matrix V is
invertible:

Λ = V −1AV.

This leads naturally to the eigen-decomposition of the matrix,

A = V ΛV −1.

A real matrix, U , is orthogonal if UTU = UUT = I.

Proposition 2.3. The following statements are equivalent:

� UT is orthogonal.

� UT = U−1.

� |U | = 1.

� U 's eigenvectors are orthonormal (the pairwise dot product is 0 and the norm is 1).

Example 2.6. Some examples of orthogonal matrices:

� Identity: I

� Permutation of coordinates:

 0 1 0
1 0 0
0 0 1


� Rotation:

(
cos θ − sin θ
sin θ cos θ

)
.

� Re�ection:
(

cos θ sin θ
sin θ − cos θ

)
.

A matrix A is said to be positive semi-de�nite when it can be obtained as the product of a matrix by its
transpose:

∃X|A = XXT .

Positive semi-de�nite matrices are always symmetric, because

AT =
(
XXT

)T
= XXT = A.
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A symmetric matrix A is positive semi-de�nite if all its eigenvalues are non-negative.

Proposition 2.4. Let A be a positive semi-de�nite matrix. Then:

� 0 ≤ λ1 ≤ λ2 ≤ ... ≤ λn and its eigenvectors are pairwise orthogonal when their eigenvalues are
di�erent.

� The eigenvalues are composed of real values.

� The multiplicity of an eigenvalue is the dimension of its eigenspace.

In this case, since eigenvectors are orthogonal, it is possible to store all the eigenvectors in an orthogonal matrix.

Therefore, the eigen-decomposition of a positive semi-de�nite matrix, A, could be

A = UΛUT ,

with U an orthogonal matrix.

As a consequence, the eigen-decomposition of a positive semi-de�nite matrix is often referred to as its diago-
nalization.

An alternative de�nition for positive semi-de�nite matrix is:

A is positive semi-de�nite if xTAx ≥ 0,∀x.

If it is xTAx > 0,∀x, then it is positive de�nite.

If it is xTAx ≤ 0,∀x, then it is negative semi-de�nite.

If it is xTAx < 0,∀x, then it is negative de�nite.

The rank of a matrix is the dimension of the vector space generated by its columns (or rows). This corresponds
to the maximum number of linearly independent columns of A. A matrix whose rank is equal to its size is called
a full rank matrix. Only full rank matrices have an inverse.

Proposition 2.5. The sum of the eigenvalues of a matrix is the sum of the elements of its main diagonal.
The product of the eigenvalues is equal to the determinant of the matrix.

We can now de�ne the Laplacian matrix for undirected graphs, as

Lij =


−1 , (vi, vj) ∈ E

0 , (vi, vj) /∈ E

di , i = j

,

or, equivalently,
L = D −A,

where A is the degree is the matrix of G, and A its adjacency matrix.

2.2.1 Exercises

1. What could you say about these matrices?

(a) A =

(
−1 3

2
1 −1

)
, det (A) = − 1

2 , A is invertible. Its eigenvalues are λ1 = −1+
√
6
2 and λ2 = −1−

√
6
2 ,

with vλ1 =

( √
6
2 t
t

)
and vλ2 =

(
−

√
6
2 t
t

)
.

(b) B =

(
−1 3

2
2
3 −1

)
. The second row is equal to the �rst row multiplied by − 2

3 . Therefore, it is not

invertible.
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(c) I: its determinant is 1. It is symmetric, orthogonal, its own inverse. Triple eigenvalue 1, with
eigenspace the whole space.

2. Show that An = XΛX−1.

First, this is only true if A is diagonalizable. If that is the case, then we can proceed by induction on n:

n = 1: Obvious.

n = 2:
A2 =

(
XΛX−1

)2
= XΛX−1XΛX−1 = XΛ2X−1.

Suppose it is true for n− 1:
An−1 = XΛn−1X−1.

Then, for n, we have:
An = AAn−1 = XΛX−1XΛn−1X−1 = XΛnX−1.

3. Find the eigenvalues and unit eigenvectors of ATA and AAT with A =

(
1 1
1 0

)
the Fibonnaci matrix.

First of all, notice that A is symmetric, so ATA = AAT = A2 =

(
2 1
1 1

)
.∣∣∣∣ 2− λ 1

1 1− λ

∣∣∣∣ = (2− λ) (1− λ)− 1 = 2− 3λ+ λ2 − 1 = λ2 − 3λ+ 1. The roots of this polynomial are

λ =
3±

√
9− 4

2
=

3±
√
5

2
.

Now,

A2v = λv ⇐⇒

{
2x+ y = λx

x+ y = λy
⇐⇒

{
x = (λ− 1) y

Therefore

E (λ1) =

(
1+

√
5

2 t
t

)

with unit eigenvector v1 = 1√
4−

√
5

(
1+

√
5

2
1

)
.

And

E (λ2) =

(
1−

√
5

2 t
t

)

with unit eigenvector v2 = 1√
4−

√
5

(
1−

√
5

2
1

)
.

4. Without multiplying

S =

(
cos θ − sin θ
sin θ cos θ

)(
2 0
0 5

)(
cos θ sin θ
− sin θ cos θ

)
,

�nd the determinant, the eigenvalues and eigenvectors. Why S is positive de�nite?

We have S = UΛUT with U orthogonal. Therefore, the eigenvalues of S are 2 and 5. Its determinant is
10. The eigenvectors are the eigenvectors of Λ rotated as well, that is:

V =

(
cos θ − sin θ
sin θ cos θ

)(
1 0
0 1

)(
cos θ sin θ
− sin θ cos θ

)
.

S is positive de�nite because

xSxT = x

(
cos θ − sin θ
sin θ cos θ

)(
2 0
0 5

)(
cos θ sin θ
− sin θ cos θ

)
xT ,
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now note that (
x

(
cos θ − sin θ
sin θ cos θ

))T

=

(
cos θ sin θ
− sin θ cos θ

)
xT ,

so

xSxT = y

(
2 0
0 5

)
yT ≥ 0,

because
(

2 0
0 5

)
is positive semi-de�nite (symmetric with positive eigenvalues).

5. For what numbers c and d are the following matrices positive de�nite?

(a) A =

 c 1 1
1 c 1
1 1 c

: all principal minors must be positive. That is:

� c > 0.

�

∣∣∣∣ c 1
1 c

∣∣∣∣ = c2 − 1 > 0. Combined with the previous one, this is c > 1.

�

∣∣∣∣∣∣
c 1 1
1 c 1
1 1 c

∣∣∣∣∣∣ = c3 + 2 − 3c. Roots: 1,
1 0 -3 2

1 1 1 -2
1 1 -2 0

, and we have c2 + c − 2, with roots

c = −1±
√
5

2 . We are only interested in the interval (1,∞), in which c3 − 3c+ 2 > 0.

Therefore, it is c > 1.

(b) B =

 1 2 3
2 d 4
3 4 5

 :

� 1 > 0.

�

∣∣∣∣ 1 2
2 d

∣∣∣∣ = d− 4 > 0 ⇐⇒ d > 4.

�

∣∣∣∣∣∣
1 2 3
2 d 4
3 4 5

∣∣∣∣∣∣ = 5d+ 24 + 24− 9d− 16− 20 = −4d+ 12 > 0 ⇐⇒ −4d > −12 ⇐⇒ d < 3.

Therefore, there is no value for d for which B is positive.

6. Show that if λ1, λ2, ..., λn are the eigenvalues of a matrix A, then Am has as eigenvalues λm
1 , λm

2 , ..., λm
n .

Induction on m.

m = 1: Obvious.

m = 2: Let vi be the eigenvector associated to λi, then

A2vi = A (Avi) = A (λivi) = λiAvi = λ2
i vi,

so λ2
i is an eigenvalue of A2, with associated eigenvector vi.

Suppose it is true for m− 1, then, for m:

Amvi = A
(
Am−1vi

)
= A

(
λm−1
i vi

)
= λm−1

i Avi = λm
i vi,

and we have the result.

7. What is the determinant of any orthogonal matrix?

If U is orthogonal, then UUT = I. Then,

1 = |I| =
∣∣UUT

∣∣ = |U |
∣∣UT

∣∣ = |U |2 .

Therefore, |U | = ±1.

8. For an undirected graph, both the adjacency matrix and the Laplacian matrix are symmetric. Show that
the Laplacian matrix is positive semi-de�nite.
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3 Random Walks on Graphs

3.1 First Perron-Frobenius Theorem

De�nition 3.1. A matrix, A, is positive if Aij > 0,∀i, j. Similarly, it is non-negative if Aij ≥ 0,∀i, j.
Similar de�nitions apply for negative and non-positive matrices.

Remark 3.1. Observe that it is not the same for a matrix to be positive as to be positive semi-de�nite.

The Perron-Frobenius theorem for non-negative matrices leads to the characterization of non-negative primary
eigenvectors. This is useful in stationary distributions, such as those of Markov chains and the famous Google's
page rank algorithm.

Theorem 3.1. Perron-Frobenius Theorem for positive matrices

If A is a positive matrix, then:

� ∃λ∗ > 0, v∗ > 0, ∥v∗∥2 = 1 such that A · v = λ∗v∗ (v∗ is a right column eigenvector).

� ∃λ∗ > 0, w > 0, ∥w∥2 = 1 such that w ·A = λ∗w (w is a left row eigenvector).

� For any other eigenvalue, λ, it holds, |λ| < λ∗ (λ∗ is a dominant eigenvalue, called the Perron

eigenvalue).

� λ∗ is unique and v∗ is unique (the only vector of unit length associated to λ∗).

De�nition 3.2. A non-negative matrix A is:

� Irreducible if, ∀i, j, ∃k ∈ N∗ such that Ak
i,j > 0.

� Primitive if, ∃k ∈ N∗ such that ∀i, j, Ak
i,j > 0.

Theorem 3.2. Perron-Frobenius Theorem for non-negative matrices

If A is a non-negative matrix, then:

� ∃λ∗ > 0, v∗ ≥ 0, ∥v∗∥2 = 1 such that A · v = λ∗v∗ (v∗ is a right column eigenvector).

� ∃λ∗ > 0, w ≥ 0, ∥w∥2 = 1 such that w ·A = λ∗w (w is a left row eigenvector).

� For any other eigenvalue, λ, it holds, |λ| ≤ λ∗ (λ∗ is a dominant eigenvalue, called the Perron

eigenvalue).

� If A is irreducible, then the vector v∗ is unique and it holds v∗ > 0.

� If A is primitive, then the eigenvalue λ∗ is unique.

Note now that a graph, G = (V,E), with adjacency matrix A, then: G is connected ⇐⇒ ∀1 ≤ i, j ≤ |V | ,∃k ∈
N∗ such that Ak

i,j > 0. This means that the adjacency matrix of connected graphs is irreducible.

Now, if a graph is k-connected, i.e., there is a k-path between all nodes, then its adjacency matrix is primitive.
One su�cient condition for a graph to be k-connected is being connected and having Aii > 0 for some i.

3.2 Random Walks on Graphs

A random walk on a graph, G = (V,E), is a random process that starts from some vertex vi, and repeatedly
moves to a neighbour vj chosen at random (for example with uniform distribution). The random walk, ξt, is
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therefore a random variable describing the position of a random walk after t steps. The probability of going
from node i to node j is the transition probability,

Pij = P (ξt+1 = j|ξt = i) .

The sequence of nodes can be regarded as a Markov chain, i.e. a discrete time stochastic process, where the
position ξ0 is the initial state, according to the init distribution, P 0, and from this point the next state only
depends on the current state. The t-step transition probability is

P t
ij = P (ξt = j|ξ0 = i) .

Some examples are the path traced by a molecule in a liquid or a gas (Brownian motion), the price of a
�uctuating stock, the �nancial status of a gambler, etc. The term random walk was �rst introduced by Karl
Pearson in 1905.

The following is a basic visual example of a random walk on a graph:

Note that we can express the transition probability Pij in a matrix P . This matrix is the transition proba-
bilities matrix, and it is row-stochastic or row-Markov, meaning,

Pij ≥ 0,∀i, j, and
∑
j

Pi,j = 1,∀i.

This implies that

P · 1 = P ·

 1
...
1

 =

 1
...
1

 .

This means that

 1
...
1

 is an eigenvector and 1 is an eigenvalue. 1 is the largest eigenvalue because

∥Pv∥1 ≤ ∥v∥1 ,

so, for an eigenvalue λ,
|λ| ∥v∥1 = ∥λv∥1 = ∥Pv∥1 ≤ ∥v∥1 ,

so |λ| ≤ 1.

From the Perron-Frobenius theorem for non-negative matrices, we know that:
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� v∗ =

 1
...
1

 is a right Perron eigenvector for P .

� |λ| ≤ λ∗ = 1 is a Perron eigenvalue.

� There exists a left Perron eigenvector πP = π.

� If P is irreducible, the vector π is unique.

� If P is primitive, the eigenvalue 1 is unique (there are no complex eigenvalues with norm 1).

3.2.1 The Stationary Distribution

Let πt be the row vector giving the probability distribution of ξt, that is, πt
i is the probability that the random

walk is at node i at time t. Therefore, we can write

πt+1 = πtP,

which, applied recursively, leads to
πt+1 = π0P t+1.

Or, we can take limits
lim
t

πt+1 = lim
t

πtP.

If this limit exists, limt π
t = π, then

π = πP.

Convergence is ensured if P is irreducible.

Example 3.1. The following example does not converge:

P =

(
0 1
1 0

)
A common way to perform random walks on graphs is with the uniform probability. That is,

Pij = P (ξt+1 = j|ξt = i) =

{
1
di

if (i, j) ∈ E,

0 otherwise,

where di is the degree of node i. Equivalently,

Pij =
Aij∑

j∈V Aij
=

Aij

di
= D−1

ii Aij .

The random sequence of vertices ξ0, ξ1, ..., ξt, ξt+1, ... visited on G is a Markov Chain with state space V and
matrix transition probabilite P = D−1A.

Example 3.2. Given the graph:
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The transition matrix for the uniform distribution is:

P =


0 0 1 0 0 0
0 0 1

3
1
3

1
3 0

1
4

1
4 0 1

4
1
4 0

0 1
4

1
4 0 1

4
1
4

0 1
4

1
4

1
4 0 1

4
0 0 0 1

2
1
2 0


3.2.2 Balance Condition

A probability distribution π satis�es the balance condition if

πiPij = πjPji,∀i, j ∈ V.

If π satis�es the balance condition, then it is the stationary distribution for the undirected graph. To see this,
notice that the balance condition can be rewritten as

πi
Aij

di
= πj

Aji

dj
.

Since the graph is considered without direction, Aij = Aji, and then

πi

di
=

πj

dj
= c,

where c is a constant, for all i, j. Now, we know that
∑

i πi = 1, so

1 =
∑
i

πi =
∑
i

πj

di
di =

∑
i

cdi = c
∑
i

di.

Therefore ∑
i

di =
1

c
.

Finally, it must be

πi = dic =
di∑
j dj

=
di

2 |E|
.

In this case:

(πP )i =
∑
j

πjPji =
∑
j

πj
1

dj
Aji =

∑
j

cAji = c
∑
j

Aji = c
∑
j

Aij = cdi =
di∑
j dj

= πi.

Therefore, we have seen that the stationary probabilities are proportional to the degrees of the vertices.

In particular, if G is d-regular, i.e., all nodes have degree d, then

π =
d

2 |E|
=

d

d · n
=

1

n

is the uniform distribution. With this setup, a random walk moves along every edge with the same frequence.

The balance condition implies time-reversibility: the reversed walk is also a Markov chain.

3.2.3 Hitting Time

De�nition 3.3. The expected hitting time, Hij , is the expected number of steps before node j is
reached in a random walk starting at node i:

Hij =

{
1 +

∑
k PikHkj if i ̸= j,

0 otherwise.
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Remark. In general, Hij ̸= Hji, so H is not symmetric.

Remark 3.2. H follows the triangle inequality

Hij ≤ Hik +Hkj .

De�nition 3.4. The commute time, Cij , is the expected number of steps in a random walk starting
at node i, reaching node j and coming back to i again:

Cij = Hij +Hji.

3.2.4 Lazy Random Walk

The lazy random walk is a variation of the random walk, in which the walk stays at the current node with
probability 1

2 , and continue with the walk with the rest of the probability.

In this case, the transition matrix is

Pij =


1
2 if i = j,
1

2di
if (i, j) ∈ E,

0 otherwise.

If Q is the transition matrix for the uniform random walk, then

πt+1 = πtP =
1

2
πt +

1

2
πtQ.

Proposition 3.1. If the lazy random walk converges and the uniform random walk is irreducible, then
it converges to the same stationary distribution as the uniform random walk.

Proof. Let Q be the transition matrix for the uniform random walk, then, the stationary distribution is

π = πQ.

For lazy random walk, say the stationary distribution is π′. Then:

π′ =
1

2
π′ +

1

2
π′Q ⇐⇒ 1

2
π′ =

1

2
π′Q ⇐⇒ π′ = π′Q.

Therefore, since Q is irreducible, the uniqueness of π implies π′ = π.

3.3 PageRank

The web is very heterogeneous bu nature, and certainly huge. We cannot expect the web graph to be connected.
Page and Brin proposed a way to overcome this problem, by ensuring the convergence of random walks on the
web graph.

The idea is to �x a positive constant, p, between 0 and 1, called the damping factor, and which represents
the probability that a user leaves the current page and goes to a random web.

Therefore, the page rank transition matrix is

Pg = (1− p)P + pB,

31
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where B = 1
n


1 1 . . . 1
1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 .

p is usually chosen small, like 0.15, modelling a situation in which a surfer will, most of the time, follow the
outgoing links and move on to one of the neighbours. A smaller percentage of time, the surfer will dump the
current page and choose arbritrarily a di�erent page from the web.

Proposition 3.2. Pg is stochastic.

Proof. We need to proof that, for all i, it holds
∑

j Pgi,j = 1.∑
j

Pgi,j =
∑
j

(1− p)Pij + pBij

=(1− p)
∑
j

Pij + p
∑
j

Bij

=(1− p) · 1 + p
∑
j

1

n

=1− p+ p · n 1

n
=1− p+ p

=1.

4 Centrality Measures

Centrality Measures try to answer the question 'What characterizes an important vertex?'. They de�ne a real-
valued function on the vertices of the graph, m : V → R, that serves to rank the vertices. However, there are
many di�erent ways to de�ne such function, leading to di�erent de�nitions of centrality, such as cohesiveness,
ability to transfer information across the network, to in�uence other nodes, to control information �ow, etc.

There are many centrality measures that count the number of paths through a given vertex. These di�er in
how relevant walks are de�ned and counted. For example, if we only consider paths of length one, we would
be computing degree centrality, while if we allow paths of arbitrary length, we would be computing eigenvalue
centrality.

4.1 Degree Centrality

The more neighbours a vertex has, the higher its communication ability is, increasing its importance.

De�nition 4.1. Given the graph G = (V,E), with adjacency matrix A, the degree centrality is
computed as

D = Au,

where u = 1 ∈ Rn.

Example 4.1. Consider the following graph:
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The degree centrality is

D = Au =


0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0




1
1
1
1
1
1

 =


2
3
2
3
3
1

 ,

so the nodes with highest value are nodes (2, 4, 5).

One drawback of this measure, is that it is very likely that several nodes present the same exact value, di�culting
an unique ranking of vertices.

4.2 Neighbourhood centrality

This measure correspond to the average degree of each vertex neighbours. We could understand this measure
as measuring how much a vertex is related to in�uencial vertices.

De�nition 4.2. Given the graphG = (V,E), with adjacency matrix A, the neighbourhood centrality
is computed as

N = D−1AD,

where D is the diagonal matrix where Dii = di is the degree of vertex i and D is the degree centrality.
Each vertex' measure is

Nv =

∑
u∈Nv

du

dv
.

Example 4.2. The neighbourhood centrality of the previous example graph is

N = D−1Au =



1
2

1
3

1
2

1
3

1
3

1




0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0




2
3
2
3
3
1

 =



3+3
2

2+2+3
3

3+3
2

2+3+1
3

2+3+3
3
3
1

 =


3

2.33
3
2

2.66
3

 ,

so the nodes with highest value are nodes (1, 3, 6).

4.3 Eigenvector Centrality

A natural extension of degree centrality is to consider all reachable nodes, not just neighbours. Eigenvector
centrality measures a node's importance while considering the importance of its neighbours. A high eigenvector
centrality means that a node is connected to many nodes that have high scores themselves.
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De�nition 4.3. Given the graph G = (V,E), with adjacency matrix A, the eigenvector centrality
of node v is

Ev =
1

λ

∑
u∈Nv

AvuEu,

where λ is a parameter. Note that this can be written as

E =
1

λ
AE,

or
AE = λE.

This means that E is an eigenvector of A, for the eigenvalue λ.

Bonacich suggested that the eigenvector of the largest eigenvalue of A could make a good network centrality
measure.

The eigenvector E must be non-negative and according to the Perron-Frobenius theorem, the largest λ enforces
this property, making it a suitable value.

Example 4.3. Let's compute E for the previous example graph. The matrix A has as largest eigenvalue
λ = 2.54, and the corresponding eigenvector is

E =


2.5
3.1
2.2
2.5
3.2
1

 .

Note that it is usually unfeasible to compute the eigenvalues and eigenvectors. It is more usual to get the vector
iteratively as

Ek = A
Ek−1

∥Ek−1∥
.

4.4 PageRank Centrality

Google's PageRank is a variant of the eigenvector centrality, which uses in-degree to award one centrality point
for every link a node receives. As we saw, the algorithm is based on a web surfer who is randomly clicking on
links, with a certain probability to go to a di�erent place of the web (the damping factor).

Therefore, we de�ne the matrix
Pg = (1− p)P + pB,

where Pij =

{
1
di

if j ∈ Ni

0 otherwise
, and Bij =

1
n .

Now, we apply the eigenvector centrality to this modi�ed matrix, as

PgEg = λEg = Eg,

with λ = 1 because Pg is stochastic.

Or, iteratively as
Egk = PgEgk−1

.

Note that in this case it is not necessary to normalize the vector at each step, because Pg is stochastic. A good

Eg0 is Eg0 =


1
n
...
1
n

 .
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4.5 Katz (or alpha) centrality

The main problem with eigenvector centrality is that it only works well when the graph is strongly connected (so
Perron-Frobenius is applicable in its stronger form). Real networks do not usually have this property, specially
if they are directed. The vertices that are not in strongly connected components will have value 0.

A way to work around this problem was proposed by Leo Katz. The idea is to give each node a minimum,
positive amount of centrality, that it can transfer to other nodes, so:

Kv = α
∑
u

AvuKu + β,

where Kv is the Katz centrality of node v, β is a vector whose elements are all equal to a given positive constant
and α ∈ (0, 1) is a parameter. Equivalently, this is

K = αAK + β,

so
(I − αA)K = β,

and
K = (I − αA)

−1
β.

For this to work, I − αA must be invertible, which happens if and only if |I − αA| ≠ 0 ⇐⇒
∣∣ 1
αI −A

∣∣ ̸= 0, so
1
α must not be an eigenvalue of A. This is ensured if we take 1

α > λmax, or 0 < α < 1
λmax

.

An iterative way to compute K is

K =

( ∞∑
k=1

αkAk

)
u.

The strength of α decreases at each iteration, acting as attenuation factor.

4.6 Clustering Coe�cient Centrality

Triadic closure is the property among three nodes A, B, and C (representing people, for instance),
that if the connections A-B and A-C exist, there is a tendency for the new connection B-C to be formed.

The clustering coe�cient measures the proportion of neighbours of each node, that connected to each other.

De�nition 4.4. Given a graph G = (V,E), with adjacency matrix A, the clustering coe�cient of
node v is

CCv =
|{{u, v, w} : (u, v) , (v, w) , (u,w) ∈ E}|(

dv

2

) ,

where the numerator is the number of triangles involving v and its neighbours, and the denominator is
the total number of possible links between v's neighbours.

The more densely connected the neighbourhood of v is, the higher is its clustering coe�cient.

Example 4.4. The clustering coe�cient of the graph example that we've been working with is

CC =



1
1
1
3
0
1
0
3
1
3
0

 =


1
1
3
0
0
1
3
0

 .
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4.7 Closeness Centrality

Closeness centrality is a measure of how close a node is, on average, to the rest of the nodes, in terms of shortest
paths. It measures the average distance between a node v and all other nodes in the network. Thus, the more
central a node is, the closer it is to all other nodes.

De�nition 4.5. Given a graph G = (V,E), the closeness centrality of node v is

CLv =
1∑

r ̸=v dist (v, r)
.

It can be normalized by the factor

CLv =
N − 1∑

r ̸=v dist (v, r)
.

An alternative is the harmonic centrality, obtained as

Hv =
∑
r ̸=v

1

dist (v, r)
,

with dist (v, r) = 0 if there is no path from v to r.

4.8 Betweenness Centrality

A family of betweenness measures are de�ned to capture a node's importance as a conduct of information �ow
in the network. This has wide applications in network theory, because in a telecommunications network, a node
with higher betweenness centrality would have more control over the network, since more information will pass
through that node.

The most well-known betweenness metric measures the number of times a node is on a shortest path between
two nodes.

De�nition 4.6. Given a graph G = (V,E), the betweenness centrality of node v is

Bv =
∑

s ̸=v ̸=t

σs,t (v)

σs,t
,

where σs,t is the number of shortest path from source node s to target node t, and σs,t (v) is the number
of shortest path between these two nodes going through v.
This measure can be normalized by the number of ordered pairs not including v:

� For directed graphs

Bv =
1

(n− 1) (n− 2)

∑
s̸=v ̸=t

σs,t (v)

σs,t
.

� For undirected graphs

Bv =
2

(n− 1) (n− 2)

∑
s̸=v ̸=t

σs,t (v)

σs,t
.

Example 4.5. For the undirected star graph:
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The center vertex has a betweenness of (n−1)(n−2)
2 (or 1, if we normalize it), while the leaves have a betweenness

of 0.

Exercise 4.1. What about the following graphs?

�

B =


0
6
3
6
4
6
3
4
0
6

 =


0
0.5
0.67
0.5
0

 .

�

B =


1
6
1
6
1
6
1
6
1
6

 .

�

B =


0
6
3
6
5
6
0
6
0
6

 =


0
0.5
0.83
0
0

 .
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5 MapReduce Computation Model

The advent of big data and the increasing analysis needs favorised the design of parallel algorithms, specially
in the realm of big data processing pipelines, with a tradeo� between communication costs and degree of
parallelism.

MapReduce is a processing paradigm that works on top of distributed environments. More precisely, it was built
on top of Google File System (GFS) and Hadoop Distributed File System (HDFS), used to manage large-scale
data and to be tolerant to hardware and networks faults. To do this, HDFS splits �les into large blocks and
distributes thema cross nodes in a cluster, and MapReduce is the programming model used to manage many
large-scale parallel computations.

Basically, the idea is that the data is �rst splitted, then some operation is done to it, and then it's merged
to produce the �nal results. For this, we will just need to de�ne the Map and Reduce functions, while the
system manages the parallel execution on distributed data and the coordination between them, leading with
the possibility that one of the tasks may fail.

Example 5.1. Word Counter

Consider a text �le splitted into partitions A,B,C,D, across di�erent nodes. We want to count how many
times each word appears in the whole document. For this, we can use MapReduce as follows:

1. Map: for each word, w, in each partition, generate the pair (w, 1).

2. Shu�e/sort: collects and groups the pairs by key (word), in order to guarantee that the same key will be
processed by the same reduce task. Shu�ing is the process of redistributing data from Map nodes to
Reduce nodes.

In our example, we would have, for each word w, the pairs (w, [1, ..., 1]), with as many 1s as w appearances.

3. Reduce: for each input (w, [1, ..., 1]), output (w,Nw), where Nw is the amount of 1s.

The Map task will typically process many words in one or more chunks. If a word, w, appears m times among
all chunks assigned to that process, there will be m key-value pairs (w, 1) among its output.

To perform the grouping and distribution to the Reduce task, the master controller merges the pairs by key
and produces a sequence of (w, [1, ..., 1]). Since it knows how many reduce tasks there will be, r, it will produce
r lists, putting a list in one of r local �les destined to one of the Reduce tasks. Each key is assigned as input to
one, and only one, Reduce task.

The Reduce task executes one or more reducers, one per key. The outputs from all reducers are merges into a
single �nal �le.

5.1 The Map Function

In general, a map function can be de�ned as a function, mf : En
1 → En

2 , where Ei is the domain of the input
(1) or output (2) and f : R → R, that applies f to each coordinate. That is:

mf ([e1, ..., en]) = [f (e1) , ..., f (en)] .

For example:
m·2 ([2, 3, 6]) = [4, 6, 12] .

In the MapReduce scheme, map is more restrictive, as the function f must produce a key-value pair. That is,
for all i = 1, ..., n, it is

f (ei) = (ki, vi) .

For example, in the word counter example:

mf ([”a”, ”b”, ”a”]) = [(”a”, 1) , (”b”, 1) , (”a”, 1)] .

38



5.2 Shu�ling/Grouping Function 5 MAPREDUCE COMPUTATION MODEL

5.2 Shu�ling/Grouping Function

The shu�e function consists in grouping the outputs of the map function by key, so

s ([(k1, v1) , ..., (kn, vn)]) = [(k1, (vj : kj = k1,∀j = 1, ..., n)) , ...] .

Following the previous example:

s ([(”a”, 1) , (”b”, 1) , (”a”, 1)]) = [(”a”, [1, 1]) , (”b”, [1])] .

5.3 Reduce Function

Generally, a reduce function applies to a vector/row, and outputs a single value, applying the aggregation
function f :

rf ([v1, ..., vn]) = f (v1, ..., vn) .

In MapReduce, reduce applies to each output of the shu�e function with the same key:

rf ((k, [v1, ..., vn])) = [(k′1, f (v1, ..., vn)) , ..., (k
′
m, f (v1, ..., vn))] .

Following the previous example:

rsum ([(”a”, [1, 1]) , (”b”, [1])]) = [(”a”, 2) , (”b”, 1)] .

A MapReduce pipeline can be a composition of di�erent rfr ◦ s ◦mfm .

The process is illustrated below:

5.4 MapReduce Execution Model

Whenever we launch the execution of a MapReduce pipeline, the following happens:

� The user program forks a master controller process and some number of worker processes at di�erent
computer nodes.

� The amster creates some number of map tasks and some number of reduce tasks. It assigns the tasks to
worker processes by taking into account the co-location.

� A worker handles either map tasks (a map worker) or reduce tasks (a reduce worker), but not both.

� A worker process reports to the amster when it �nishes a task, and a new task is scheduled by the master
for that worker process.
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� The master keeps track of the status of each map and reduce task (idle, executing, or completed).

5.4.1 Coping with Node Failures

If the master node fails, the entire MapReduce job must be restarted.

If a worker node fails, it would be detected and managed by the master, since it periodically pings the worker
processes. All the map tasks assigned to this worker have to be redone in this case.

5.4.2 Algorithms by MapReduce

This paradigm is not a solution to every problem, and in fact it only makes sense when �les are very large, and
rarely outdated. Its original purpose was to execute very large matrix-vector multiplications.

5.5 Use-Case: Matrix-Vector Multiplication by MapReduce

Let M be a n× n squared matrix and V a vector of size n. Their product,

W = MV,

is de�ned by

wi =

n∑
j=1

mijvj .

We can store M and V in a �le in HDFS as triples ((i, j) ,mij) for M and pairs (j, vj) for V 1. Now we can
compute the computation by MapReduce as:

� Map: for each ((i, j) ,mij) and (j, vj), it returns (i,mijvj).

� Reduce: simply sums all the values for each key i, producing the pair (i, wi).

For this to work, all the pairs from V must be available in all chunks (V cannot be stored distributely).

More concretely, we can de�ne the functions:

1This way is very e�cient for sparse matrices.
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1 map(key ,val):

2 i = key(1)

3 j = key(2)

4 for (j2, v) in V:

5 if j == j2:

6 emit(i, val*v)

7

8 reduce(key , val):

9 sum = 0

10 for v in val

11 sum += v

12 emit(key , sum)

Now, if n is large, V might not �t in main memory of a worker node, and a large number of disk accesses may
be required. We can improve the approach by distributing V and re�ning the algorithm as follows:

� We devide the matrix into vertical stripes of equal width, and the vector in strips of the same size:

Here, the size of Mk is n × nk and the size of Vk is nk, so that the product Mk · Vk can be performed,
outputing a vector of size n.

� Each map task is assigned a chunk from one of the matrix stripes and gets the entire corresponding stripe
of the vector.

� The �nal result would be

W = MV =

K∑
k=1

Mk · Vk,

where we apply the previously explained algorithm to each sub-multiplication step.

5.5.1 Matrix Multiplication

This approach can be extended to matrix multiplication. Now, let M be a matrix of size n1 × n2 and N a
matrix of size n2 × n3, the product P = MN is a matrix of size n1 × n3, where

pik =

n2∑
j=1

MijNjk.

The matrices are stored as (M, (i, j) ,mij) and (N, (j, k) , njk).

41



5.6 Relational Algebra by MapReduce 5 MAPREDUCE COMPUTATION MODEL

� Map 1: transform (M, (i, j) ,mij) into (j, (M, i,mij)) and (N, (j, k) , njk) into (j, (N, k, njk)).

� Reduce 1: for each key, j, produces the key-value pair ((i, k) ,mijnjk).

� Map 2: the identity.

� Reduce 2: for each key, (i, k), produce the sum of the list of values associated to this key,
(
(i, k) ,

∑
j mijnjk

)
.

In addition, M could be divided into K vertical stripes of size (n1, nk) and N into K horizontal stripes of size
(nk, n3), where

∑
k nk = n2. In this setup, we can apply the algorithm to compute each Mk ·Nk and then sum

them all.

The functions can be de�ned more precisely as:

1 map_1(T,(i,j),T_ij):

2 emit(j , (T,i,T_ij))

3

4 reduce_1(key , val):

5 for v in val:

6 for w in val:

7 if v(1) == M and w(1) == N:

8 i = v(2)

9 M_ij = v(3)

10 k = w(2)

11 N_jk = w(3)

12 emit((i, k), M_ij*N_jk)

13

14 map_2(key , val):

15 emit(key , val)

16

17 reduce_2(key , val):

18 sum = 0

19 for v in val:

20 sum += v

21 emit(key , sum)

5.6 Relational Algebra by MapReduce

5.6.1 Selection

Let R (A1, ..., An) be a relation stored as a �le in HDFS. The elements of this �le are the tuples of R. The
selection operator, σC (R) can be de�ned using MapReduce as:

� Map: for each tuple in R, t, test if t satis�es C. If it does, produce the key-value pair (t, t).

� Reduce: the identity.

5.6.2 Projection

For the projection, πA (R), we can do:

� Map: for each tuple in R, t, construct a tuple t′ by removing the attributes that are not in A. Output
(t′, t′).

� Reduce: for each key, t′, produced by the map tasks, there will be one or more key-value pairs (t′, t′). The
reduce function turns (t′, [t′, t′, ..., t′]) into (t′, t′) so it produces exactly one pair.
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5.6.3 Join

R (A) ▷◁B S (C) with A,B,C sets of attributes satisfying B ⊂ A,B ⊂ C, can be implemented with MapReduce
as:

� Map: for each tuple (a, b) ∈ R, produce the key-value pair (b, (R, a)). For each tuple (c, b) ∈ S, produce
the key-value pair (b, (S, c)).

� Reduce: for each key, b, output as many pairs as needed, (b, [(R, a) , (S, c)]).

5.6.4 Aggregation

The aggregation operator, γA,θ(B) (R), where A∪B is the set of attributes of R, and A∩B = ∅, can be de�ned
with MapReduce as:

� Map: for each tuple, t, produce (a, b), where a is the A part of t, and b is the B part.

� Reduce: each key represents a group, so we apply θ to the list [b1, ..., bn] associated to each value a. We
output (a, x), where x = θ (b1, ..., bn).

5.7 Some Issues of MapReduce

� Locality: input data is stored on local disks of machines in the cluster. Each �le is divided into blocks of
64MB, each of which is stored several times, as replicas, on di�erent machines. MapReduce master node
takes the location information of the input �les into account, and attempts to schedule a map task on a
machine that contains the needed replica. If this fails, it tries to schedule a map task in a machine that
is near to one that has a replica.

� Granularity: the amp and reduce steps are divided into M and R pieces. M and R should be much
larger than the number of workers. Each worker can perform di�erent tasks, improving dynamic load
balancing and speeding up recovery when a worker fails. Some practical bounds on how large these values
should be say that the master should take M +R scheduling decisions and keep M ×R states in memory.

� Re�nements: partitioning input data using di�erent functions according to the problem to be solved.

� Ordering guarantees: the intermediate key-value pairs are generally processed in increasing key order,
to make it easy to generate a sorted output �le per partition. However, this is not guaranteed.

6 Spark Parallel Computing Framework

Nowadays, data is growing faster than processing speeds, and so the only possible solution is to parallelize on
large clusters.

Apache Spark is an open source implementation of a framework for large-scale data processing, providing an
interface for programming clusters with implicit data parallelism and fault tolerance. It extends a programming
language with read-only data structure distributed over a cluster of machines, the Resilient Distributed
Datasets (RDDs), maintained in a fault-tolerant way. RDDs were developed in 2012 in response to limitations
in Hadoop's MapReduce, which forces a particular linear data�ow as a sequence of HDFS reads and writes.

Spark is up to 100 times faster than traditional Hadoop thanks to its in-memory data processing:
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6.1 Spark's Engine Properties and Components

Spark was originally written in Scala, a high level language for JVM. There are APIs for Java, Scala, Python,
R,...

The Dataframe API was released as an abstraction on top of the RDD, as well as packages like MLlib or GraphX,
that can be used for machine learning and graph analytics. These APIs facilitate the implementation of both
iterative algorithms and interactive or exploratory data analysis.

Spark requires a cluster manager and a distributed storage system:

� Cluster management: Spark supports standalone, native Spark clusters, where we can launch a cluster
either manually or using scripts, or we can use Hadoop YARN, Apache Mesos, or Kubernetes.

� Distributed storage: Spark cna interface with a wide variety of distributed databases, like Alluxio, HDFS,
MapR-FS, Cassandra,...

Spark also supports di�erent sources of data, in di�erent formats and from di�erent databases. All these
relationships are shown below:

6.2 Spark's Execution Architecture

Data is splitted into partitions or blocks, and the driver assigns tasks to each worker, which reads a HDFS
block, and has a cache. Each worker process and cache data, if necessary, sending the results to the driver when
done.
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6.3 Resilient Distributed Datasets (RDDs)

RDDs are immutable and distributed collections of objects, spread across a cluster, and stored in RAM or disk
(when they are persistent). They are statically typed, i.e., RDD[T] has objects of type T. The types can be of
any type of Python, Java, or Scala objects, including user-de�ned classes.

RDDs are built via parallel transformations and computed via parallel actions on distributed datasets,
executed lazily. For instnace, RDDs are splitted into multiple partitions, which may be computed on di�erent
nodes of a cluster.

� Transformation: operation on an RDD that returns a new RDD. They are computed lazily, only after
an action is called.

� Action: operation on an RDD that returns a �nal result which is not another RDD. When an action is
called, all the transformations prior to it are executed in the same order they were de�ned. Each time a
new action is called, the entire RDD must be computed from scratch, but the user can deide to persist
intermediate result (caching).

Inside Apache Spark, the work�ow is managed as a directed acyclic graph (DAG). Nodes represents RDDs while
edges represent the operations executed on the RDDs. Spark keeps track of the set of dependencies between
di�erent RDDs. This is called the lineage graph.

Example 6.1. Python Example: �rst line mentioning Python

1 # spark context creation

2 sc = pyspark.SparkContext (...)

3

4 # creating an RDD of strings with textFile ()

5 lines = sc.textFile("README.txt")

6

7 # Transformations:

8 # Construct a new RDD from a previous one , one common transformation is filtering data that

matches a predicate

9 pythonLines = lines.filter(lambda line: "Python" in line)

10

11 # Actions:

12 # Compute a result based on an RDD , and either return it to the driver program or save it to

an external sotrage system

13 pythonLines.first ()

Some notes:

� Once a SparkContext, sc, is set, it is used to build RDDs. The driver program manages a number of
workers, and di�erent workers on di�erent machines might count lines in di�erent ranges of the �le.

� filter () does not mutate the existing input RDD. Instead, it returns a pointer to a new RDD.

� Many transformations work on one element at a time, but this is not true for all transformation, like
union.
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6.3.1 RDDs Operations

� map () is used from di�erent purposes, from fetching a large collection to just squaring numbers. It
transforms an RDD of length N into another RDD of length N , applying a function to each element in
the RDD. For example:

1 nums = sc.parallelize ([1,2,3,4])

2 squared = nums.map(lambda x: x*x).collect ()

3

4 for num in squared:

5 print(num)

6

7 # 1 4 9 16

� flatMap () transforms an RDD of length N into a collection of N collection, then �atterns these into a
single RDD of results, applying a function to each collection. For example:

1 def tokenize(sentence):

2 return [word for word in sentence]

3

4 rdd = sc.parallelize (["coffee panda"])

5

6 # Using map

7 map_result = rdd1.map(tokenize).collect ()

8

9 for token in map_result:

10 print(token)

11

12 # Output: [" coffee", "panda"]

13

14 # Using flatMap

15 flatmap_result = rdd1.flatMap(tokenize).collect ()

16

17 for token in flatmap_result:

18 print(token)

19

20 # Output: "coffee", "panda"

� reduce () is the most common action on basic RDDs. It operates on two elements of the type of the RDD
and returns a new element of the same type. For example:

1 data = sc.parallelize ([1,2,3])

2

3 data.reduce(lambda x, y: x+y) # Result is 6

� reduceByKey () operates on RDD of key-value pairs. It runs several parallel reduce operations, for each
key, where each operations combines values that have the same key. It returns a new RDD consisting of
each key and the reduced value for that key. For example:

1 pets = sc.parallelize ([("cat", 3), ("dog", 2), ("cat", 1)])

2

3 pets.reduceByKey(lambda x, y: x+y)

4

5 # Result: {("cat", 4) ,("dog", 2)}

� groupByKey () and sortByKey () return the RDD with the values grouped or sorted by the keys. For
example:

1 pets = sc.parallelize ([("cat", 3), ("dog", 2), ("cat", 1)])

2

3 pets.groupsByKey () # Result: {("cat", [3, 1]) ,("dog", [2])}

4

5 pets.sortByKey () # Result: {(" cat", 3) ,("cat", 1) ,("dog", 2)}

� distinct () produces a new RDD with only distinct items.
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� union (otherRDD) produces a new RDD consisting of the data from both sources, removing duplicates.

� RDD.subtract (otherRDD) produces a new RDD consisting in all values present in RDD but not in
otherRDD.

� RDD.cartesian (otherRDD) returns of possible pairs (a, b) where a ∈ RDD and b ∈ otherRDD. Note
that this operation is very costly.

� RDD.innerJoin(otherRDD) returns only keys that are present in both pairs to the output RDD.

� RDD.leftOuterJoin (otherRDD) and RDD.rightOuterJoin (otherRDD) join the two RDDs together
by key, allowing one of them to miss the key (left or right). For example:

1 rdd = sc.parallelize ([(1 ,2) ,(3,4) ,(3,6)])

2 other = sc.parallelzie ([3, 9])

3

4 rdd.join(other) # result: {(3, (4,9)), (3, (6,9))}

5

6 rdd.leftOuterJoin(other) # result: {(1, (2, None)), (3, (4,9)), (3, (6,9))}

6.3.2 RDDs Actions

� collect () is used to retrieve the entire RDD. It is useful if it �lters RDDs down to a very small size to deal
with it locally at the driver. The retrieved dataset must �t in memory in a single machine.

� take (N) is used to retrieve a small number of elements in the RDD at the driver program and then iterate
them over them locally.

� top (N) is used to extract the top elements.

� takeSample (withReplacement,N, seed) allows to take a sample of the data either with out without
replacement.

� foreach () performs computations on each element in the RDD without bringing it back locally.

� count () returns a count of the elements.

� countByV alue () returns a map of each unique value and its count.

6.3.3 Caching

Spark RDDs are lazily evaluated, and sometimes we use the same RDD multiple times. Naively, Spark will
recompute the RDD and all of tis dependencies each time we call an action on the RDD. To avoid this, we can
ask Spark to persist data using persist ().

Notice that calling persist () does not force the evaluation of the RDD.

If we cache too much data, Spark will automatically delete old partitions. For the memory-only storage levels,
it will recompute these partitions the next time they are accessed. This means that caching unnecessary data
can lead to eviction and increased re-computation time.

7 Community Detection Approaches

7.1 k-Clique

De�nition 7.1. A clique is a complete subgraph.
A k-clique is a complete subgraph with k nodes.
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Example 7.1. In the following picture2, we observe the brute force process to �nd all 4-cliques in this 7-node
graph. For this, we need to check C4

7 combinations.

Most versions of clique problems are hard, and a common problem is that of �nding maximal cliques. This
is, cliques with the largest number of nodes. For this problem, we have di�erent algorithms, like:

� Bron-Kerbosch algorithm, with complexity O
(
3

n
3

)
.

� Tarjan and Trojanowski algorithm.

� Janez Konc algorithm.

There are also algorithms with better theoretical complexity, but Bron-Kerbosch and some variants that improve
it are more e�cient in practice. The basic form of the algorithm is as follows:

1 Bron -Kerbosch(G=(V,E)):

2 # Initialization

3 P = V

4 X = {}

5 R = {}

6

7 def BronKerbosch(R,P,X):

8 if P = {} and X = {} then

9 R is maximal

10

11 for v in P:

12 P_prime = P.intersection(neighbours(v))

13 X_prime = X.intersection(neighbours(v))

14 R_prime = R.union({v})

15 BronKerbosch(R_prime , P_prime , X_prime)

16 P = P - {v}

17 X = X.union({v})

For example, the following tree represents the execution of the algorithm for the shown graph:

2Example from https://en.wikipedia.org/wiki/Clique_problem.
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7.2 k-Core

k-Cliques are interesting as a concept, but they are very restrictive, and so some relaxations have been proposed.
A very well known one are k-Cores [1]. The basic idea is that networks may present a core-periphery structure,
where in the core there are a lot of connected nodes, while in the periphery we �nd a more sparse structure,
with peripheral nodes called whiskers.

De�nition 7.2. The k-core of a graph G is a maximal connected subgraph of G where vertices have
at least degree k. Also called k-degenerate.

The approach to �nd k-cores is k-core decomposition. The idea is that, given a graph G = (V,E), we delete
recursively all vertices, and edges connecting them, of degree less than k, to extract the k-core, such that:

� Each vi in a k-core graph has di ≥ k.

� A (k + 1)-core is a subgraph of a k-core graph.

The algorithms goes as:

1 kCore(G=(V,E)):

2 L = {} # Maps each vertex to the highest k-core it belongs

3 d = [] # List of degrees for each vertex

4 D = {} # Dictionary mapping each degree to all vertices with that degree

5 d_max = max([ degree(v) for v in V])

6

7 for v_i in V:

8 d[v_i] = degree(v_i)

9 D[d[v_i]]. append(v_i)

10

11 for k in range(0,d_max):

12 while not D[k].empty():

13 v_i = D[k].pop # Get vertices of k-core

14 L[v_i] = k

15

16 for u_j in neighbours(v_i): # Update neighbours removing the edges to the extracted

vertex

49



7.2 k-Core 7 COMMUNITY DETECTION APPROACHES

17 if d[u_j] > k:

18 D[d[u_j]].pop(u_j)

19 D[d[u_j]-1]. append(u_j)

20 d[u_j] -= 1

Example 7.2. Let's go through an example:

First, we initialize d and D:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
d[v_i] 4 6 5 7 4 6 5 5 2 2 2 3 4 4 4 3 3 5 3 2 3 1 1 1 1

d[v_i] 7 6 5 4 3 2 1
D[d[v_i]] [4] [2,6] [3,7,8,18] [1,5,13,14,15] [12,16,17,19,21] [9,10,11,20] [22,23,24,25]

Now, we start the procedure. For k = 1, the �rst node to be taken out would be 22, so:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
d[v_i] 4 6 5 7 4 6 5 5 2 2 2 3 4 4 4 3 3 5 3 2 3 2 1 1 1 1

d[v_i] 7 6 5 4 3 2 1
D[d[v_i]] [4] [2,6] [3,7,8,18] [1,5,13,14,15] [12,16,17,19,21] [9,10,11,20,21] [22,23,24,25]

v_i 22
L[v_i] 1

Now, with 23:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
d[v_i] 4 6 5 7 4 6 5 5 2 2 2 3 4 4 4 3 3 5 3 2 2 1 1 1 1 1
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Figure 1: Non-verlapping communities (left) and overlapping communities (right).

d[v_i] 7 6 5 4 3 2 1
D[d[v_i]] [4] [2,6] [3,7,8,18] [1,5,13,14,15] [12,16,17,19] [9,10,11,20,21] [21,23,24,25]

v_i 22 23
L[v_i] 1 1

Now, with 24:

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
d[v_i] 4 6 5 7 4 6 5 5 2 2 2 3 4 4 3 4 3 3 5 3 2 1 1 1 1 1

d[v_i] 7 6 5 4 3 2 1
D[d[v_i]] [4] [2,6] [3,7,8,18] [1,5,13,14,15] [12,16,17,19,14] [9,10,11,20] [21,24,25]

v_i 22 23 24
L[v_i] 1 1 1

And so on...

7.3 Community Detection Problem

A community in a network refers to the occurrence of clusters or groups of nodes in a network, that are more
densely connected internally than with the nodes outside the community. There are mainly two cases:

� Non-overlapping communities: divides into clusters of nodes with dense connections internally, and
sparser connections between clusters. Each node is assigned to one community.

� Overlapping communities: assumes that pairs of ndoes are more likely to be connected if they are both
members of the same communities, and less likely to be connected if they do not share any community.

There are several considerations or properties of communities that can be used to obtain them:

� Mutuality of ties: every node in the group has ties to one another.
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� Compactness: closeness or reachability of group nodes.

� Density of edges: high number of edges within a community.

� Separation of higher frequency of ties among group members compared to non members.

� Usual metrics: graph density, internal and external density, graph cut, modularity score.

This problems is a combinatorial optimisation problem, and it is NP-hard if we want a exact solution. However,
there are many approaches that leverage greedy techniques or approximate heuristics, that we are going to see
now.

7.3.1 k-Clique Community

De�nition 7.3. A k-clique community is the union of all k-cliques that can be reached from one to
the other through a sequence of adjacent k-cliques.
Two k-cliques are adjacent if they share k − 1 vertices.

To �nd k-clique communities, we can use the Clique Percolation Method [2], which consists in:

1. Find all maximal cliques, sorting them based on degrees.

2. Create clique overlap matrix, where M [i, j] = 1 if cliques i and j overlap in at least k − 1 nodes.

3. Communities are the connected components that arise from this.

7.3.2 Louvain Algorithm

The most populat community detection algorithm is the Louvain algorithm, which is based in the concept of
modularity:

In network science, the con�guration model is a method for generating random networks from a given degree
sequence. It is widely used as a reference model for social networks, allowing the modeler to incorporate arbitrary
degree distributions.

The idea is to assign a degree dv to each node v. Each degree is a half-link, or stub, and the sum of stubs must
be even to be able to build a graph, i.e.,

∑
v∈V dv = 2m. Then, we choose two stubs uniformly at random and

connect them by a link, then choose another pair from the remaining 2m − 2 stubs, and connect them. We
repeat this process until there are no more stubs. The resulting network keeps the same degrees but randomly
pairs up nodes.

A realization might include cycles, self-loops or multi-links. The uniform distribution of the matching must
be kept, so these are not excluded. However, their expected number goes to zero for large networks, because
the probability of v being connected to one of w stubs is dw

2m−1 . Since node v has dv stubs, the probability of v
being connected to w is dvdw

2m−1 which is almost the same as dvdw

2m for large m.

Now, modularity measures the relative density of links inside communities with respect to links outside
communities. There are di�erent methods to compute the modularity, but in the most common version, the
randomization of the edges is done to preserve the degree of each vertex.

The basic idea is to compare the number of links within communities with the number expected on the basis of
chance. The generated network has less links between nodes of the same community, and more between nodes
of di�erent communities.

It can be computed as

Q =
1

2m

∑
i

∑
j

[
Aij −

didj
2m

]
δ (ci, cj)
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or

Q =

[∑
i

∑
j Aij

2m
−
∑

i di
∑

j dj

(2m)
2

]
δ (ci, cj) ,

where di is the degree of vertex i, and ci is the community of vertex i. δ is the Kronecker function, so δ (ci, cj)
is 1 if ci = cj , and 0 otherwise.

The modularity is −1 ≤ Q ≤ 1 and it is positive when links within communities exceed links within communities
in a randomly rewired network.

This is the modularity of a graph, but we can also compute the modularity of a community, c, as

Qc =

∑
i∈c

∑
j∈c Aij

2m
−
∑

i∈c di
∑

j∈c dj

(2m)
2

or

Qc =

∑
in

2m
−
(∑

in+out

2m

)2

,

where
∑

in is the sum of edge weights between nodes within the community c (each edge is considered twice),
and

∑
in+out is the sum of all edge weights for nodes within the community, including incident ones from the

other communities.

Note that if there is only one community, then Q = 0.

Now, �nding the optimal value for modularity is impractical, because it needs to go through all possible combi-
nations of the nodes into communities, and so the Louvain method is a heuristic method for greedy modularity
maximisation in 2 phases:

1. Modularity is optimized by allowing only local changes to node communities memberships.

(a) Initially, each node is assigned its own community.

2. The identi�ed communities are aggregated into super-nodes, to build a new network.

(a) This phase is repeated until there is only one super node, the whole graph.

This algorithm is widely used for large networks, because it is e�cient and produces high dense communities. It
has a complexity of O (n log n) in time, and can be used on weighted graphs. In addition, it provides hierarchical
communities, allowing us to de�ne the level of detail of the communities, and also to obtain subcommunities
within communities. A sample visualization is the following:

In more precise terms, the phase 1 goes as follows: what is ∆Q if we move a node v from CJ to CI :

∆Q
CJ

v→CI
= ∆QCJ\{v} +∆QCI∪{v}.
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But how can we derive ∆QCI∪{v}? The key here is that the gain in modularity does not depend on the original
community of v. It can easily be computed by moving an isolated node v into CI :

∆QCI∪{v} = QCI∪{v} −
[
QCI

+Q{v}
]
,

and therefore

∆QCJ∪{v} =

[∑
in +2 · dv,in

2m
−
(∑

in+out +dv

2m

)2
]
−

[∑
in

2m
−
(∑

in+out

2m

)2

−
(

dv
2m

)2
]
.

On the other side,
∆QCJ\{v} =

[
QCJ\{v} +Q{v}

]
−QCJ

,

so

∆QCJ\{v} =

[∑
in −2 · dv,in

2m
−
(∑

in+out −dv

2m

)2

−
(

dv
2m

)2
]
−

[∑
in

2m
−
(∑

in+out

2m

)2
]
.

Therefore, the gain only depends on dv,in and C.

The complete algorithm is:

1. For each node v:

(a) Compute modularity gain from removing v from its community and placing it in the community of
its neighbours.

(b) Place v in the community that maximizes ∆Q.

(c) One iteration is achieved for all the nodes in a sequential manner.

(d) Repeat the procedure sequentially to all nodes until no more improvement (local maximum of mod-
ularity).

(e) The output of this phase depends on the order in which nodes are considered. Research shows that
this does not signi�cantly a�ect the overall modularity.

2. Nodes from communities are grouped into super nodes.

(a) Links between nodes of the same community c are represented by self-loops weighted by adding up
the links between these nodes: c has a loop edge with weight

w =
∑

vi,vj∈c

Ai,j .

(b) Links between communities are weighted by adding up the links between community's nodes. Each
(ci, cj) has a link with weight

w =
∑

vi∈ci,vj∈cj

Ai,j .

7.3.3 Walktrap Approach

This other approach is based on random walks. The idea is to consider a random walk on a graph, in which at
each time step, we move to neighbours uniformly at random:

Pij =
Aij

di
, P = D−1A,

and P t
ij represents the probability to get from i to j in t steps.

We would think that two nodes i and j that lie in the same community should have a high P t
ij , as well as similar

P t
ik ∼ P t

jk, for di�erent k. Therefore, we can de�ne a distance (or similarity) between nodes, as

rij (t) =

√√√√√ n∑
k=1

(
P t
ik − P t

jk

)2
dk

=
∥∥∥D− 1

2P t
i −D− 1

2P t
j

∥∥∥ .
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In addition, we approximate the computation by

P t
ik ∼ Nik

Ni
,

where Nik is the number of walks starting at i and passing through k, and Ni is the number of walks starting
from i.

The approach goes as follows:

1. Assign each node to its own community.

2. Compute the distance between adjacent nodes, rij (t).

3. Choose the two closest communities and merge them.

4. Update the distance between communities, as

rc1,c2 (t) =

√√√√ n∑
k=1

(
P t
c1k

− P t
c2k

)2
dk

=
∥∥∥D− 1

2P t
c1 −D− 1

2P t
c2

∥∥∥ ,
where

P t
ck =

1

|c|
∑
i∈c

P t
ik.

5. Finish when there is only one community.

7.3.4 Girvan-Newman Approach

Edge betweenness of e is the fraction of shortest paths between all nodes s and t going through edge e:

ebt (e) =
∑
s̸=t

ne
s,t

ns,t
.

In this case, we focus on edges that connect communities, and construct them by progressively removing edges
with the highest betweenness value. It goes as:

1. For all e ∈ E

(a) Compute ebt (e)

(b) Remove the edge e with largets ebt (e)

2. Repeat until all edges are gone. Stop when it splits in 2 components. The output is a dendogram.

8 Models of In�uence and Di�usion

8.1 Introduction

B. Ryan and N. Gross published Acceptance and Di�usion of Hybrid Corn Seed in two communities [3] in 1943.
In this paper, they studied the information e�ect and the adoption of technology between 1924 and 1940. They
found out that:

� The di�usion pattern was made up of three periods:

1. Long period of slow initial growth

2. Rapid rise in adoption
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3. Brief decline as the most resistant adopters accepted the new technology

� They classi�ed the di�erent subjects as innovators, early adopters, early majority, late majority, and
laggards.

This information is shown here:

This idea has been studied multiple times in di�erent areas:

� Studying and modelling the spread of beliefs or ideas or informaiton (rumours, news) or virus. This
represents an active research area in �elds like economics, epidemiology, social science,...

� In�uence models have been studied for uears:

� Original mathematical models: Schelling and Granovetter

� Viral marketing strategies modelled by Domingos and Richardson

� Network coordination games

� Studying diseases or contagions. The most commonly used epidemic models are the SIR (Susceptible-
Infected-Recovered) and the SIS (Susceptible-Infected-Susceptible).

� In�uence of the social environment on health: behaviors such as eating, practicing physical activities, drug
use and seeking medical follow up.

8.1.1 Compartmental Models in Epidemiology

General models for infectuous diseases from human to human have been modeled since the Spanish �u in 1918.
Relevant applications have been to SIDA and more recently to COVID 19.

The epidemiological models are based on 2 concepts:

� There are compartments to divide individuals

� Rules specify the rate of transition between compartments, like the force of infection.
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There are variants with or without the dynamics of birth and death, immunity periods, etc

SIR is the simplest predictive model, and recovery confers lasting resistance, with death being negligible. The
three compartments are:

� S: number of susceptible individuals. When a susceptible and an infectious individual come into contact,
the susceptible individual contracts the disease and transitions to the infectious compartment.

� I: number of infectious individuals.

� R: number of removed and immune individuals. Also called recovered or resistant.

Now, S (t) , I (t) and R (t) are functions de�ned to study the dynamic in a short infectious period. Let's de�ne
the rest of the variables:

� N is the total population.

� β is the average number of contacts per person per time.

� Therefore, β
N is the transmission parameter.

� The transition rate between I and R, γ, represents the rate at which individuals recover from the disease.

� dI
dt is the incidence in terms of infections.

� We impose that the population remains constant:

dS

dt
+

dI

dt
+

dR

dt
= 0.

The SIR system can be expresed using the following di�erential equation system:
dS
dt = − β

N · S · I
dI
dt = β

N · S · I − γI
dR
dt = −γI

The Gillespie algorithm is used to simulate chemical or biochemical systems. It is a stochastic simulator
algorithm that generates a statistically correct trajectory of a stochastic equation system for which the reaction
rates are known.

The SIR model has many variants, that have been developed over the years:

� Models without immunity after recovery (SIS). This tries to model illnesses like the common cold, which
does not confer any long-lasting immunity.

� Immunity lasts only for a short period of time (SIRS).

� There exists a latent period of the disease (Exposed), where the person is not yet infectious (SEIS or
SEIR).

� Infants can be born with maternally derived immunity (MSIR).

� Model di�erentiates between Recovered and Deceased (SIRD).

� Vaccinated susceptible population (SIRV).
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8.1.2 Challenges in Social Networks

Di�usion models are used to identify the way information is transmitted in a network. So:

� How to model the information di�usion process in a social network?

� How to identify the in�uencers (nodes which transmit more information)? Which kind of graph-based
measures can be used?

� How to maximise the in�uence?

� How to minimise or stop the in�uence (which links to remove)?

From the computer science perspective, we need to develop fast and e�cient algorithms on large networks.

8.2 In�uence and Di�usion Models

These can be probabilistic models. The probability that someone becomes activated based on its activated
n neighbours is

P (n) = 1− (1− p)
n
,

where p is the activation probability of a neihbour and n is the number of activated neighbours. The intuition
here is that the more neighbours are activated, the higher probability that you will become activated.

But they can also be threshold models. In this case, nothing happens until the threshold is reached:

P (b) = δ (b > b) .

In both cases, the main idea is to de�ne a di�usion process on the network, originating from a set seed S. The
expected number of activated nodes at the end is the in�uence of S, σ (S).

The network is represented as a directed graph, G = (V,E), where individual ndoes are active or inactive. The
process is thus de�ned as:

� Start with initial set of active seed nodes, S.

� Run t steps and �nish when there are no more possible activations.

8.2.1 Independent Cascade Model

In the cascade model, when node u becomes active, it is given a single chance to activate each currently inactive
neighbour v, with a probability of success of pu,v.

This probability is independent of the history. If u succeeds, then v will be active in step t+ 1, but whether or
not u succeeds, it cannot make any further attempts to activate v in subsequent rounds.

If v has multiple newly activated neighbours, their attempts are sequenced in an arbitrary order.

For example, see the following di�usion process:
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Let now Dt be the set of active nodes at step t. For v ∈ N (Dt), its probability of being active at t+ 1 is

pv (t+ 1) = 1−
∏

u∈N(v)∩Dt

(1− pu,v) .

The sets It and St follow the following iterative de�nition:

I0 = S,

S0 = V \ I0,

St+1 = St \ It+1,

where It+1 is obtained from St and It as explained before.

Then, the set of all infected nodes throughout the contagion process originating at S is

I (S) = ∪t≥0It,

and the expectation is taken over the random infection attempts from the infected nodes, as

σ (S) = E [|I (S)|] .

However, there is still something that we need to sort out: how to de�ne pu,v.

A commonly used approach is to assign to each edge (u, v) the probability pu,v = 1
d−
v
(note that we consider the

directed edges).

Some studies propose to learn in�uence probabilities from data, for example studying the propagation actions
in social networks, such as replies, forwards, etc.

8.2.2 Threshold Model

In this case, we consider, for each node u, the proportion p of active neighbours, and (1− p) of inactive ones.
To become activated, node u needs to verify

ρ · p · du > γ · (1− p) · du,

so the threshold to accept is
p >

γ

ρ+ γ
,

where ρ is the reward (weight) of active nodes and γ is the reward of inactive nodes. The model applies this
rule in cascade until there are no more possible activations.

For example, if ρ = 3 and γ = 2, the threshold is 2
5 . It would go as follows:
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The Linear Threshold Model In this case, each node v is in�uenced by each incoming active neighbour u,
according to a weight wu,v, so that ∑

u∈N(v)

wu,v ≤ 1.

Each v has a random acceptance threshold θ ∼ U [0, 1], which represents the fraction of v's neighbours that
must become active in order for v to become active.

Given random thresholds, and an initial set of active nodes, S0, with all the other nodes inactive, the di�usion
process unfolds in discrete steps: in step t, all nodes that were active in step t− 1 remain active, and activate
any node v such that the total weight of its active neighbours is at least θv:∑

u∈N(v)

wu,v ≥ θv.

A possible way to de�ne wu,v is by taking into account the degree of v, as wu,v = 1
dv
.

8.2.3 Cascades and Clusters

Homophily can often serve as a barrier to di�usion, by making it hard for innovations to arrive from outside
communities. This means that we can use the structure of a network to analyze the success or failure of a
cascade.

A cluster of density δ is a set of nodes such that each node in the set has at least a δ fraction of its network
neighbours in the set. For the cascade process to enter the cluster, the threshold should be smaller than 1− δ.

8.3 In�uence Maximization Problem Formulation

Given G = (V,E), let σ be a function such that σ : S → N maps a set of nodes S ∈ V to their in�uence value
σ (S), i.e., the expected number of activated nodes in a di�usion process.

The in�uence maximization problem asks:

For a given budget, k, �nd a set of k nodes, S, with objective

max
|S|≤k

σ (S) .

Solving this problem is NP-hard, so we need to leverage approximate methods.

8.3.1 Greedy Framework

The approximation by greedy algorithm consists in iteratively adding nodes to S by maximizing the marginal
gain in each step:

1 greedy_max_influence(G=(V,E), k):

2 S = {}

3 for i in range(1,k) do

4 u = argmax_u ([ sigma(S.union({u})) - sigma(S) for u in V-S])

5 S = S.union({u})

8.3.2 Submodular Functions

A set function f is submodular if for any sets R ⊂ T and ∀v /∈ T,R, it holds

f (R ∪ {v})− f (R) ≥ f (T ∪ {v})− f (T ) .
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These functions represents functions of diminishing returns: the marginal gain from adding an element to a
set R is at least as high as the marginal gain from adding the same element to a superset of R.

It also implies the monotonicity of f , f (R ∪ {v}) ≥ f (R).

Theorem 8.1. For a non-negative, monotone, submodular funciton f , let S be a set of size k obtained
by selecting elements one at a time, each time choosing an element that provides the largest marginal
increase in the function value.
Let S∗ be a set that maximizes the value of f over all k-element sets.
Then

f (S) ≥

[
1−

(
1− 1

k

)k
]
f (S∗) .

In other words, S provides a
(
1− 1

e

)
= limk→∞ 1−

(
1− 1

k

)k
approximation of the optimal value.

It can be proven that σ (·) is a submodular function, and therefore, when we use the greedy approach, obtaining
a set S, it must be

σ (S) ≥
(
1− 1

e

)
σ (S∗) .
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