
INFOH415 - Advanced Databases

Jose Antonio Lorencio Abril

Fall 2022

Professor: Esteban Zimanyi

Student e-mail: jose.lorencio.abril@ulb.be

1

This is a summary of the course Advanced Databases taught at the Université Libre de Bruxelles by Professor
Esteban Zimanyi in the academic year 22/23. Most of the content of this document is adapted from the course
notes by Zimanyi, [1], so I won't be citing it all the time. Other references will be provided when used.

2

CONTENTS CONTENTS

Contents

I Active Databases 8

1 Introduction 8

2 Representative Systems and Prototypes 9
2.1 Starbust . 9

2.1.1 Starbust Semantics . 10
2.1.2 Correctness of rules . 11
2.1.3 State transitions and net e�ect . 12
2.1.4 More Starbust commands . 13

2.2 Oracle . 13
2.2.1 Oracle semantics . 15
2.2.2 Instead-of triggers . 15

2.3 DB2 . 16
2.3.1 DB2 semantics . 16

2.4 SQL Server . 17
2.4.1 SQL Server Semantics . 18
2.4.2 Limitations . 19
2.4.3 Nested and Recursive triggers . 19
2.4.4 Trigger management . 19

3 Applications of Active Rules 20
3.1 A summary of Integrity Constraints . 20
3.2 Management of Derived Data . 22

3.2.1 Virtual views with rules . 22
3.2.2 Replication with rules . 23

3.3 Business Rules: Advantages and Di�culties . 23
3.3.1 Advantages . 23
3.3.2 Di�culties . 24

3.4 A case study: Energy Management System . 24
3.4.1 Connect a new user . 25
3.4.2 Propagation of power reduction from a user . 25
3.4.3 Propagation of power reduction from a node . 26
3.4.4 Propagation of power reduction from a branch to a node 26
3.4.5 Propagation of power reduction from a branch to a distributor 26
3.4.6 Propagation of power increase from a user . 26
3.4.7 Propagation of power increase from a node . 27
3.4.8 Propagation of power increase from a branch to a node 27
3.4.9 Propagation of power increase from a branch to a distributor 27
3.4.10 Excess power requested from a distributor . 28
3.4.11 Propagate power change from a branch to its wires . 28
3.4.12 Change wire type if power passess threshold . 28
3.4.13 Add a wire to a branch . 29

II Graph Databases 30

4 Introduction 30
4.1 CAP theorem . 30
4.2 Graph DB model: graphs . 30
4.3 The Resource Description Framework (RDF) Model . 31
4.4 The property graph data model . 31

4.4.1 Implementation: adjacency list . 32
4.4.2 Implementation: incidence list . 33

3

CONTENTS CONTENTS

4.4.3 Implementation: adjacency matrix . 33
4.4.4 Implementation: incidence matrix . 34

5 Neo4j 34
5.1 File storage . 35

5.1.1 Caching . 35
5.2 Cypher . 35

5.2.1 Nodes . 36
5.2.2 Edges . 37
5.2.3 Queries . 37

III Temporal Databases 39

6 Introduction 39

7 Time Ontology 43
7.1 TSQL2: Time ontology . 43

7.1.1 Time and facts . 44

8 Temporal Conceptual Modeling 45
8.1 The conceptual manifesto . 45

8.1.1 MADS temporal data types . 46
8.1.2 Temporal objects . 46
8.1.3 Non-temporal objects . 47
8.1.4 Temporal attributes . 47
8.1.5 Attribute timestamping properties . 48
8.1.6 Temporal generalization . 48
8.1.7 Temporal relationships . 49
8.1.8 Synchronization relationships . 50
8.1.9 Example of a temporal schema . 50

9 Manipulating Temporal Databases with SQL-92 51
9.1 Temporal statements . 51
9.2 Temporal keys . 51

9.2.1 Sequenced primary key . 51
9.3 Handling Now . 52
9.4 Duplicates . 52

9.4.1 Preventing duplicates . 52
9.5 Referential integrity . 53

9.5.1 Case 1: neither table is temporal . 54
9.5.2 Case 2: both tables are temporal . 54
9.5.3 Case 3: Only the referenced table is temporal . 55

9.6 Querying valid-time tables . 55
9.6.1 Extracting prior states . 56
9.6.2 Sequenced queries . 56
9.6.3 Nonsequenced queries . 60
9.6.4 Sequenced aggregation function . 60
9.6.5 Sequenced division . 62

10 Temporal Support in current DBMSs and SQL 2011 65
10.1 Oracle . 65
10.2 Teradata . 66
10.3 DB2 . 66
10.4 SQL 2011 . 66

4

CONTENTS CONTENTS

IV Spatial Databases 69

11 Introduction 69
11.1 GIS architectures . 69

12 Georeferences and Coordinate Systems 71
12.1 Projected coordinate systems . 71

12.1.1 Latitude and longitude . 71
12.1.2 Shape of projection surface . 72
12.1.3 Angle . 72
12.1.4 Fit . 73
12.1.5 Geometric deformations . 73

13 Conceptual Modelling for Spatial Databases 73
13.1 The Spatiotemporal conceptual manifesto . 74

13.1.1 MADS Spatial datatypes . 75
13.1.2 Topological predicates . 76
13.1.3 Spatial objects . 78
13.1.4 Spatial attributes . 78
13.1.5 Spatial objects VS spatial attributes . 79
13.1.6 Generalization: inheriting spatiality. 79
13.1.7 Spatial relationships . 80
13.1.8 Spatial aggregation . 81
13.1.9 Space and time varying attributes . 81

14 Logical Modelling for Spatial Databases 82
14.1 Representation models . 82

14.1.1 Raster model: tesselation . 82
14.2 Digital Elevation Models (DEMs) . 82
14.3 Representing the geometry of a collection of objects . 83

14.3.1 Spaghetti model . 83
14.3.2 Network model . 83
14.3.3 Topological model . 84

15 SQL/MM 84
15.1 SQL/MM Spatial: Geometry Type Hierarchy . 84

15.1.1 ST_Geometry . 85
15.1.2 Methods . 85
15.1.3 Example of conceptual schema . 88
15.1.4 Reference queries: alphanumerical criteria . 89
15.1.5 Reference queries: spatial criteria . 90
15.1.6 Reference queries: interactive queries . 90

16 Representative Systems 91
16.1 Oracle Locator . 91

16.1.1 Oracle Spatial . 91
16.1.2 Oracle Network Model . 91
16.1.3 Oracle Topological Model . 91
16.1.4 Oracle Geo Raster . 91
16.1.5 Oracle geocoding . 91
16.1.6 Oracle MapViewer . 91
16.1.7 Oracle: geometry type . 92
16.1.8 Oracle: geometrical primitives . 92
16.1.9 Oracle: element . 92
16.1.10Oracle: geometry . 92
16.1.11Oracle: layer . 92
16.1.12SDO_GEOMETRY type . 93

5

CONTENTS CONTENTS

16.1.13Oracle: Spatial indexes . 96
16.1.14Oracle: query execution model . 97
16.1.15Oracle: writing spatial queries . 97

6

LIST OF FIGURES LIST OF ALGORITHMS

List of Figures

1 Merging temporal intervals. Blue is permitted; Green, Red and Orange are forbidden. 41
2 Temporal join: cases. 42
3 An example of a temporal model in three di�erent ways. 46
4 The MADS temporal data types. 46
5 Allen's temporal operators and how to express them. 50
6 Cases for temporal di�erence. 59
7 Ad Hoc GIS. 70
8 Loosely coupled GIS. 70
9 Integrated GIS. 70
10 The geoid. 71
11 An ellipse (left) and how it can approximate locally a complex shape (right). 71
12 The latitude and the longitude. 72
13 Shapes of projection surface. 72
14 Angle of projection. 73
15 Fit of projection. 73
16 MADS Spatial Type Hierarchy. 75

List of Tables

1 Starbust's rule de�nition syntax. 9
2 Starbust's rule commands. 13
3 Oracle's rule de�nition syntax. 14
4 DB2's rule de�nition syntax. 16
5 SQL Server's rule de�nition syntax. 18
6 Temporal duplicates example. 52

List of Algorithms

1 processRules(con�ict set CS) . 11
2 processRules . 15
3 processRules . 17

7

1 INTRODUCTION

Part I

Active Databases

1 Introduction

Traditionally, DBMS are passive, meaning that all actions on data result from explicit invocation in application
programs. In contrast, active DMBS can perform actions automatically, in response to monitored events, such
as updates in the database, certain points in time or de�ned events which are external to the database.

Integrity constraints are a well-known mechanism that has been used since the early stages of SQL to
enhance integrity by imposing constraints to the data. These constraints will only allow modi�cations to the
database that do not violate them. Also, it is common for DBMS to provide mechanisms to store procedures, in
the form of precompiled packets that can be invoked by the user. These are usually caled stored procedure.

The active database technology make an abstraction of these two features: the triggers.

De�nition 1.1. A trigger or, more generally, an ECA rule, consists of an event, a condition and a
set of actions:

� Event: indicates when the trigger must be called.

� Condition: indicates the checks that must be done after the trigger is called. If the condition is
ful�lled, then the set of actions is executed. Otherwise, the trigger does not perform any action.

� Actions: performed when the condition is full�lled.

Example 1.1. A conceptual trigger could be like the following:

Event A customer has not paid 3 invoices at the due date.
Condition If the credit limit of the customer is less than 20000¿.
Action Cancel all curernt orders of the customer.

There are several aspects of the semantics of an applications that can be expressed through triggers:

� Static constraints: refer to referential integrity, cardinality of relations or value restrictions.

� Control, business rules and work�ow management rules: refer to restrictions imposed by the business
requirements.

� Historical data rules: de�ne how historial data has to be treated.

� Implementation of generic relationships: with triggers we can de�ne arbitrarily complex relationships.

� Derived data rules: refer to the treatment of materialized attributes, materialized views and replicated
data.

� Access control rules: de�ne which users can access which content and with which permissions.

� Monitoring rules: assess performance and resource usage.

The bene�ts of active technology are:

� Simpli�cation of application programs by embedding part of the functionality into the database using
triggers.

� Increased automation by the automatic execution of triggered actions.

� Higher reliability of data because the checks can be more elaborate and the actions to take in each case
are precisely de�ned.

� Increased �exibility with the possibility of increasing code reuse and centralization of the data management.

8

2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

2 Representative Systems and Prototypes

Even though this basic model is simple and intuitive, each vendor proposes its own way to implement triggers,
which were not in the SQL-92 standard. We are going to study Starbust triggers, Oracle triggers and DB2
triggers.

2.1 Starbust

Starbust is a Relational DBMS prototype developed by IBM. In Starbust, the triggers are de�ned with the
following de�nition of their components:

� Event: events can refer to data-manipulation operations in SQL, i.e. INSERT, DELETE or UPDATE.

� Conditions: are boolean predicates in SQL on the current state of the database after the event has
occurred.

� Actions: are SQL statements, rule-manipulation statements or the ROLLBACK operation.

Example 2.1. 'The salary of employees is not larger than the salary of the manager of their department.'
The easiest way to maintain this rule is to rollback any action that violates it. This restriction can be broken

(if we focus on modi�cations on the employees only) when a new employee is inserted, when the department of
an employee is modi�ed or when the salary of an employee is updated. Thus, a trigger that solves this could
have these actions as events, then it can check whether the condition is full�lled or not. If it is not, then the
action can be rollback to the previous state, in which the condition was full�lled.

1 CREATE RULE Mgrsals ON Emp

2 WHEN INSERTED , UPDATED(Dept), UPDATED(Salary)

3 IF EXISTS (

4 SELECT *

5 FROM Emp E, Dept D, EMP M

6 WHERE E.Dept = D.Dept --Check the correct department

7 AND E.Sal > M.Sal --Check the salary condition

8 AND D.Mgr = M.Name --Check the manager is the correct one

9)

10 THEN ROLLBACK;

The syntax of Starbust's rule de�nition is as described in Table 1. As we can see, rules have an unique name
and each rule is associated with a single relation. The events are de�ned to be only database updates, but one
rule can have several events de�ned on the target relation.

The same event can be used in several triggers, so one event can trigger di�erent actions to be executed.
For this not to produce an unwanted outcome, it is possible to establish the order in which di�erent triggers
must be executed, by using the PRECEDES and FOLLOWS declarations. The order de�ned by this operators
is partial (not all triggers are comparable) and must be acyclic to avoid deadlocks.

1 CREATE RULE <rule -name > ON <relation -name >

2 WHEN <list of trigger -events >

3 [IF <condition >]

4 THEN <list of SQL -statements >

5 [PRECEDES <list of rule -names >]

6 [FOLLOWS <list of rule -names >];

7

8 where

9 <trigger -event > := INSERTED | DELETED | UPDATED [<attributes >]

Table 1: Starbust's rule de�nition syntax.

Example 2.2. 'If the average salary of employees gets over 100, reduce the salary of all employees by 10%.'
In this case, the condition can be violated when a new employee is inserted, when an employee is deleted or

when the salary is updated. Now, the action is not to rollback the operation, but to reduce the salary of every
employee by 10%.

First, let's exemplify the cases in which the condition is violated. Imagine the following initial state of the
table Emp:

9

2.1 Starbust 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

Name Sal

John 50
Mike 100
Sarah 120

The average salary is 90, so the condition is full�lled.

� INSERT INTO Emp VALUES('James', 200)

The average salary would be 117,5 and the condition is not full�lled.

� DELETE FROM Emp WHERE Name='John'

The average salary would be 110 and the condition is not full�lled.

� UPDATE Emp SET Sal=110 WHERE Name='John'

The average salary would be 110 and the condition is not full�lled.

The trigger could be de�ned as:

1 CREATE RULE SalaryControl ON Emp

2 WHEN INSERTED , DELETED , UPDATED(Sal)

3 IF

4 (SELECT AVG(Sal) FROM Emp) > 100

5 THEN

6 UPDATE Emp

7 SET Sal = 0.9* Sal;

Note, nonetheless, that for the �rst example, we would get the following result:

Name Sal

John 45
Mike 90
Sarah 108
James 180

Here, the mean is 105.75, still bigger than 100. We will see how to solve this issue later.

2.1.1 Starbust Semantics

At this point, it is interesting to bring some de�nitions up to scene:

De�nition 2.1. A transaction is a sequence of statements that is to be treated as an atomic unit of
work for some aspect of the processing, i.e., a transaction either executes from beginning to end, or it
does not execute at all.

De�nition 2.2. A statement is a part of a transaction, which expresses an operation on the database.

De�nition 2.3. En event (in a more precise way than before) is the occurrence of executing a statement,
i.e., a request for executing an operation on the database.

Thus, rules are triggered by the execution of operations in statements. In Starbust, rules are statement-
level, meaning they are executed once per statement, even for statements that trigger events on several tuples.
In addition, the execution mode is de�ered. This means that all rules triggered during a transaction are
placed in what is called the con�ict set (i.e. the set of triggered rules). When the transaction �nishes, all
rules are executed in triggering order or in the de�ned order, if there is one. Nonetheless, if the need for a rule
executing during a transaction exists, we can use the PROCESS RULES declaration, which executes all rules
in the con�ict set.

The algorithm for executing all rules after the transaction �nished or PROCESS RULES is called is described
in Algorithm 1. As we can see, rule processing basically involves 3 stages:

1. Activation: the event in the rule requests the execution of an operation and this is detected by the
system.

10

2.1 Starbust 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

2. Consideration: the condition of the rule is evaluated.

3. Execution: if the condition is full�lled, the action in the rule is executed.

1 while CS is not empty

2 select R in CS with highest priority

3 delete R from CS

4 if R.condition is TRUE

5 execute R.action

Algorithm 1: processRules(con�ict set CS)

2.1.2 Correctness of rules

De�nition 2.4. The repeatability of the execution is the property that ensures that the system
behaves in the same way when it receives the same input transaction in the same database state, i.e.,
the results are deterministic.

As we have seen before, rule de�nitions specify a partial order for execution, but several rules may have
highest priority at the moment of selection. To achieve repeatability, the system maintains a total order, based
on the user-de�ned partial order and the timestamps of the creation of the rules.

De�nition 2.5. The termination of rule execution is reached when an empty con�ict set is obtained.

Note that the execution of the rules may trigger more rules, this could cause nontermination, if two rules
call each other in a cycle. Thus, ensuring termination is one of the main problems of active-rule design.

Example 2.3. Return to the previous example. We saw how the �rst of the examples did not end up full�lling
the condition, but it is because we did not take into account that the rule would trigger itself because it updates
the Salary of Emp. Thus, the insertion and subsequent execution of the rule triggered gave us:

Name Sal

John 45
Mike 90
Sarah 108
James 180

As we have updated the salaries, the rule is triggered again. The condition would be full�lled, 105.75>100
and the salaries would be modi�ed again, arriving to the table as:

Name Sal

John 41.5
Mike 81
Sarah 97.2
James 162

As the salaries ahve been updated again, the rule is triggered once more. Now, the mean is 95.425 < 100,
so the condition is not met and the actions are not executed. The rule has terminated.

In this case, termination is ensured because all values are decreased by 10%. This implies that the mean is
also decreased by 10%. Thus, no matter how high the mean is at the beginning, at some point it will go below
100, because 0.9x < x, ∀x > 0.

Remark 2.1. In general, guaranteeing termination is responsibility of the programmer is not an easy task.

De�nition 2.6. A rule is correct (or possesses the correctness property) if it ensures repeatability and
termination, taking into account the rest of factors in the database (other rules, domain of the attributes,
structure of the tables,...).

11

2.1 Starbust 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

2.1.3 State transitions and net e�ect

A transaction causes a state transition of the database, in the form of an addition, suppression of modi�cation
of one or more tuples of the database.

Before the transaction commits, the system stores two temporary transition relations, that contain the
tuples a�ected by the transition. This tables are:

� INSERTED: for each event, it stores newly inserted tuples and the new form of tuples that have been
modi�ed.

� DELETED: for each event, it stores deleted tuples and the old form of tuples that have been modi�ed.

De�nition 2.7. The net e�ect of a transaction on a tuple is the composed e�ect of the transaction on
the tuple, from the starting state to the end of the transaction.

Example 2.4. Some simple net e�ects:

� The sequence INSERT → UPDATE → ... → UPDATE → DELETE on a newl tuple, has null e�ect: the
tuple was not in the database at the beginning, and it is not there at the end.

� The sequence INSERT → UPDATE → ... → UPDATE on a new tuple, has the same net e�ect as inserting
the tuple with the values given in the last update.

� The sequence UPDATE → ... → UPDATE → DELETE on an existing tuple, has the same net e�ect as
just deleting it.

Remark 2.2. Rules consider the net e�ect of transactions between two database states, so each tuple appears
at most once in each temporary table.

Example 2.5. Let's see the INSERTED and DELETED tables of our example. We start with the table

Name Sal

John 50
Mike 100
Sarah 120

And perform UPDATE Emp SET Sal=110 WHERE Name='John'. If we accessed the temporary tables now,
we would see:

INSERTED
Name Sal

John 110

DELETED
Name Sal

John 50

Now, the rule is triggered because salary has been updated. The condition is met and the action is launched.
If we accessed the temporary tables now, we would see:

INSERTED
Name Sal

John 99
Mike 90
Sarah 108

DELETED
Name Sal

John 50
Mike 100
Sarah 120

Note how the �rst tuple in INSERTED shows only the net e�ect on the tuple.

With this de�nitions, we can give a more precise de�nition of rule triggering:

De�nition 2.8. A rule is triggered if any of the transition relations corresponding to its triggering
operations is not empty.

A great feature of rules is that it is possible to reference the transition tables, which can be very useful in
many occasions.

12

2.2 Oracle 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

Example 2.6. Now, imagine we want to add the rule 'If an employee is inserted with a salary greater than
100, add the employee to the table of hifh paid employees'. This rule could be de�ned as:

1 CREATE RULE HighPaid ON Emp

2 WHEN

3 IF

4 EXISTS (SELECT * FROM INSERTED WHERE Sal > 100)

5 THEN

6 INSERT INTO HighPaidEmp

7 (SELECT * FROM INSERTED WHERE Sal > 100)

8 FOLLOWS SalaryControl;

When we insert (James, 200), the tuple is inserted and the rules SalaryControl and HighPaid are triggered.
Because we have de�ned HighPaid to follow SalaryControl, the latter would execute earlier. Now, SalaryControl,
as we saw, would trigger more instances of the same rule, which would be all executed before HighPaid. At the
end, as all employees would have been modi�ed, all of them with a salary bigger than 100 would be added to
the table HighPaidEmp because of this new rule. In this case, only James full�lls the condition.

2.1.4 More Starbust commands

1 1) DEACTIVATE RULE <rule -name > ON <table -name >

2 Makes the specified rule not to be taken into account.

3

4 2) ACTIVATE RULE <rule -name > ON <table -name >

5 Makes the specified rule to be taken into account.

6

7 3) DROP RULE <rule -name > ON <table -name >

8 Deletes the specified rule.

9

10 4) CREATE RULESET <ruleset -name >

11 Creates a ruleset , i.e., a set of related rules.

12

13 5) ALTER RULESET <ruleset -name > [ADDRULES <rule -names >] [DELRULES <rule -names >]

14 Allows to add or delete rules to/from a ruleset.

15

16 6) DROP RULESET <ruleset -name >

17 Deletes the specified ruleset (but not the rules).

18

19 7) PROCESS RULES

20 Processes all active rules.

21

22 8) PROCESS RULESET <ruleset -name >

23 Process a specified ruleset , if it is active.

24

25 9) PROCESS RULE <rule -name >

26 Process a specified rule , if it is active.

Table 2: Starbust's rule commands.

2.2 Oracle

In Oracle, the term used is TRIGGER. Triggers in Oracle respond to modi�cation operations (INSERT,
DELETE, UPDATE) to a relation, just as in Starburst.

The triggers in Oracle can be de�ned for di�erent granularities:

� Tuple-level: the rule is triggered once for each tuple concerned by the triggering event.

� Statement-level: the rule is triggered only once even if several tuples are involved.

Also, the execution mode of triggers in Oracle is immediate, meaning they are executed just after the event
has ben requested, in contrast to Starburst, in which the execution mode is referred, as we saw. This allows for
rules to be executed before, after or even instead of the operation of the triggering event. In 3, the de�nition
syntax of triggers in Oracle is detailed. Some notes:

13

2.2 Oracle 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

� The BEFORE or AFTER commands de�ne when the rule should execute in relation to the events that
trigger it.

� If FOR EACH ROW is written, then the trigger is a tuple-level trigger, and it is activated once for each
tuple concerned.

� This is useful if the code in the actions depends on data provided by the triggering statement or on
the tuples a�ected.

� The INSERTING, DELETING and UPDATING statements may be used in the action to check
which triggering event has occurred.

� OLD and NEW reference the old value of the tuple (if it is update or delete) and the new value of
the tuple (if it is update or insert).

� The condition consists of a simple predicate on the current tuple.

� If FOR EACH ROW is not written, then the trigger is a statement-level trigger, and it is activated once
for each triggering statement even if several tuples are involved or no tuple is updated.

� In this case, OLD and NEW are meaningless.

� This is useful if the code of the actions does not depend on the data provided by the triggering
statement nor the tuples a�ected.

� It does not have a condition part1.

� It does not have the possibility to refer to intermediate relations as in Starbust1.

� Oracle triggers can execute actions containing arbitrary PL/SQL2 code (not just SQL as in Starburst).

1 CREATE TRIGGER <trigger -name > {BEFORE|AFTER} <list of trigger -events >

2 ON <table -name >

3 [REFERENCING <references >]

4 [FOR EACH ROW]

5 [WHEN (<condition >)]

6 <actions >;

7

8 where

9 <trigger -event > := INSERT | DELETE | UPDATE [OF <column -names >]

10 <references > := OLD as <old -tuple -name > | NEW as <new -tuple -name >

11 <actions > := <PL/SQL block >

Table 3: Oracle's rule de�nition syntax.

Example 2.7. Row-level AFTER trigger.
Imagine we have two tables:

� Inventory(Part, PartOnHand, ReorderPoint, ReorderQty)

� PendingOrders(Part, Qty, Date)

We want to de�ne a rule that whenever a PartOnHand is modi�ed, and its new value is smaller than the
ReorderPoint (i.e. we have less parts than the threshold to order more parts), we add a new record to Pendin-
gOrders as a new order for this part and the required quantity, if it is not already done. This can be done as
follows:

1 CREATE TRIGGER Reorder

2 AFTER UPDATE OF PartOnHand ON Inventory

3 FOR EACH ROW

4 WHEN (New.PartOnHand < New.ReorderPoint)

5 DECLARE NUMBER X;

6 BEGIN

1It is not clear why Oracle engineers made it like this.
2PL/SQL extends SQL by adding the typical constructs of a programming language.

14

2.2 Oracle 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

7 SELECT COUNT (*) INTO X

8 FROM PendingOrders

9 WHERE Part = New.Part;

10

11 IF X=0 THEN

12 INSERT INTO PendingOrders VALUES (New.Part , New.ReorderQty , SYSDATE)

13 ENDIF;

14 END;

Let's apply the rule to see how it works. Let's say our table Inventory is:

Part PartOnHand ReorderPoint ReorderQty

1 200 150 100
2 780 500 200
3 450 400 120

If we execute the following transaction on October 10, 2000:

1 UPDATE Inventory

2 SET PartOnHand = PartOnHand - 70

3 WHERE Part = 1;

Then the tuple (1,100,2000-10-10) would be inserted into PendingOrders.

The algorithm for executing rules in Oracle is shown in Algorithm 2. As we can see, statement-level triggers
are executed before/after anything else, and row-level triggers are executed before/after each a�ected tuple is
modi�ed. Note that the executions needs to take into account the priority among triggers, but only those of
the same granularity (row vs statement) and type (before vs after).

1 For each STATEMENT -LEVEL BEFORE trigger

2 Execute trigger

3

4 For each row affected by the triggering statement

5 - For each ROW -LEVEL BEFORE trigger

6 Execute trigger

7 - Execute the modification of the row

8 - Check row -level constraints and assertions

9 - For each ROW -LEVEL AFTER trigger

10 Execute trigger

11

12 Check statement -level constraints and assertions

13

14 For each STATEMENT -LEVEL AFTER trigger

15 Execute trigger

Algorithm 2: processRules

2.2.1 Oracle semantics

� The action part may activate other triggers. In that case, the execution of the current trigger is suspended
and the others are considered using the same algorithm. There a maximum number of cascading triggerss,
set at 32. When this maximum is reached, execution is suspended and an exception is raised.

� If an exception is raised or an error occurs, the changes made by the triggering statement and the ac-
tions performed by triggers are rolled back. This means that Oracle supports partial rollback instead of
transaction rollback.

2.2.2 Instead-of triggers

This is another type of Oracle trigger, in which the action is carried out inplace of the statement that produced
the activating event. These triggers are typically used to update views and they need to be carefully used,
because changing one action Y for an action X can sometimes have unexpected behaviors.

15

2.3 DB2 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

Example 2.8. An Instead-of trigger:

1 CREATE TRIGGER manager -insert

2 INSTEAD OF INSERT ON Managers

3 REFERENCING NEW AS n

4 FOR EACH ROW

5 UPDATE Dept d

6 SET mgrno = n.empno

7 WHERE d.deptno = n.deptno;

This trigger automatically updates the manager of a department when a new manager is inserted.

2.3 DB2

In DB2, every trigger monitors a single event, and are activated immediately, BEFORE or AFTER their event.
They can be de�ned row-level or statement-level, as in Oracle. But in this case state-transition values can be
accessed in both granularities:

� OLD and NEW refer to tuple granularity, as in Oracle.

� OLD_TABLE and NEW_TABLE refer to table granularity, like the DELETED and INSERTED in
Starburst.

DB2's triggers cannot execute data de�nition nor transactional commands. They can raise errors which in turn
can cause statement-level rollbacks.

The syntax is as in Table 4.

1 CREATE TRIGGER <trigger -name > {BEFORE|AFTER} <trigger -event >

2 ON <table -name >

3 [REFERENCING <references >]

4 FOR EACH {ROW|STATEMENT}

5 WHEN (<SQL -condition >)

6 <SQL -procedure -statements >;

7

8 where

9 <trigger -event > := INSERT | DELETE | UPDATE [OF <column -names >]

10 <references > := OLD as <old -tuple -name > | NEW as <new -tuple -name > |

11 OLD_TABLE as <old -table -name > | NEW_TABLE as <new -table -name >

Table 4: DB2's rule de�nition syntax.

The processing is done as in Algorithm 3. Note that:

� Steps 1) and 6) are not required when S if part of an user transaction.

� If an error occurs during the chain processing of S, then the prior DB state is restored.

� IC refers to Integrity Constraints.

2.3.1 DB2 semantics

� Before-triggers: these are used to detect error conditions and to condition input values. They are exe-
cuted entirely before the associated event and they cannot modify the DB (to avoid recursively activating
more triggers).

� After-triggers: these are used to embed part of the application logic in the DB. The condition is evaluated
and the action is possibly executed after the event occurs. The state of the DB prior to the event can be
reconstructed from transition values.

� Several triggers can monitor the same event.

� In this case, the order is total and entirely based on the creation time of the triggers. Row-level and
statement-level triggers are intertwined in the total order.

16

2.4 SQL Server 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

1 WHEN triggers ACTIVATE each other:

2 IF a modification statement S in the action A of a trigger causes event E:

3 1) SUSPEND execution of A, SAVE its data on a stack

4 2) COMPUTE OLD and NEW relative to E

5 3) EXECUTE BEFORE -triggers relative to E, update NEW

6 4) APPLY NEW transition values to DB.

7 FOR EACH IC violated by current state with action Aj:

8 a) COMPUTE OLD and NEW relative to Aj

9 b) EXECUTE BEFORE -triggers relative to Aj, update NEW

10 c) APPLY NEW transition values to DB

11 d) PUSH ALL AFTER -triggers relative to Aj into

12 a queue of suspended triggers

13 5) EXECUTE ALL AFTER -triggers relative to E

14 IF ANY of them contains action Aj invoking other triggers:

15 REPEAT RECURSIVELY

16 6) POP from the stack the data for A, continue its evaluation

Algorithm 3: processRules

� If the action of a row-level trigger has several statements, they are all executed for one tuple before
considering the next one.

Example 2.9. Imagine we have the following two tables:

Part

PartNum Supplier Cost
1 Jones 150
2 Taylor 500
3 HDD 400
4 Jones 800

Distributor

Name City State
Jones Palo Alto CA
Taylor Minneapolis MN
HDD Atlanta GA

And there is a referential integrity constraint that requires Part Suppliers to be also distributors, with HDD
as a default Supplier:

1 FOREIGN KEY (Supplier)

2 REFERENCES Distributor(Name)

3 ON DELETE SET DEFAULT;

Then, the following trigger is a row-level trigger that rollbacks when updating Supplier to NULL:

1 CREATE TRIGGER OneSupplier

2 BEFORE UPDATE OF Supplier ON Part

3 REFERENCING NEW AS N

4 FOR EACH ROW

5 WHEN (N.Supplier is NULL)

6 SIGNAL SQLSTATE '70005' ('Cannot change supplier to NULL');

2.4 SQL Server

In SQL Server, a single trigger can run multiple actions, and it can be �red by more than one event. Also,
triggers can be attached to tables or views. SQL Server does not support BEFORE-triggers, but it supports
AFTER-triggers (they can be de�ned using the word AFTER or FOR3) and INSTEAD OF-triggers.

The triggers can be �red with INSERT, UPDATE and DELETE statements.
The option WITH ENCRYPTION encrypts the text of the trigger in the syscomment table.
Finally, the option NOT FOR REPLICATION ensures that the trigger is not executed when a replication

process modi�es the table to which the trigger is attached.
The syntax is shown in Table 5.

� INSTEAD OF-triggers: are de�ned on a table or a view. Triggers de�ned on a view extend the types
of updates that a view support by default. Only one per triggering action is allowed on a table or view.
Note that views can be de�ned on other views, and each of them can have its own INSTEAD OF-triggers.

3FOR and WITH APPEND are used for backward compatibility, but will not be supported in the future.

17

2.4 SQL Server 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

1 CREATE TRIGGER <trigger -name > ON <table -name >

2 [WITH ENCRYPTION]

3 {FOR | AFTER | INSTEAD OF} <list of trigger -events >

4 [WITH APPEND]

5 [NOT FOR REPLICATION]

6 AS <Transact -SQL -statements >;

7

8 where

9 <trigger -event > := INSERT | DELETE | UPDATE

Table 5: SQL Server's rule de�nition syntax.

� AFTER-triggers: are de�ned on a table. Modi�cations to views in which the table data is modi�ed in
response, will �re the AFTER-triggers of the table. More than one is allowed on a table. The order of
execution can be de�ned using the sp_settriggerorder procedure. All other triggers applied to a table
execute in random order.

2.4.1 SQL Server Semantics

� Both clases of triggers can be applied to a table.

� If both trigger classes and constraints are de�ned for a table, the INSTEAD OF-trigger �res �rst. Then,
constraints are processed and �nally AFTER-triggers are �red.

� If constraints are violated, INSTEAD OF-trigger's actions are rolled back.

� AFTER-triggers do not execute if constraints are violated or if some other event causes the table modi�-
cation to fail.

� As stored procedures, triggers can be nested up to 32 levels deep and �red recursively.

� Two transition tables are available: INSERTED and DELETED, which are as in Starburst.

� The IF UPDATE(<column-name> clause determines whether an INSERT or UPDATE event ocurred to
the column.

� The COLUMNS_UPDATE() clause returns a bit pattern indicating fhich of the tested columns were
isnerted or updated.

� The @@ROWCOUNT function returns the number of rows a�ected by the previous Transact-SQL state-
ment in the trigger.

� A trigger �res even if no rows are a�ected by the event. The RETURN command can be used to exit the
trigger transparently when this happens.

� The RAISERROR command is used to display error messages.

� There are some Transact-SQL statements that are not allowd in triggers:

� ALTER, CREATE, DROP, RESTORE and LOAD DATABASE.

� LOAD and RESTORE LOG.

� DISK RESIZE and DISK INIT.

� RECONFIGURE.

� If in a trigger's code it is needed to assign variables, then SET NOCOUNT ON must be included in the
trigger code, disallowing the messages stating how many tuples were modi�ed in each operation.

18

2.4 SQL Server 2 REPRESENTATIVE SYSTEMS AND PROTOTYPES

2.4.2 Limitations

� The INSTEAD OF DELETE and INSTEAD OF UPDATE triggers cannot be de�ned on tables that have
a correspoonding ON DELETE or ON UPDATE cascading referential integrity de�ned.

� Triggers cannot be created on a temporary or system table, but they can be referenced inside other
triggers.

2.4.3 Nested and Recursive triggers

SQL Server enables to enable or disable nested and recursive triggers:

� Nested trigger option: determines whether a trigger can be executed in cascade. There is a limit of 32
nested trigger operations. It can be set with sp_con�gure 'nested triggers', 1 | 0.

� Recursive trigger option: causes triggers to be re-�red when the trigger modi�es the same table as
it is attached to: the neste trigger option must be set to true. This option can be set with sp_dboption
'<db-name>', 'recursive triggers', 'TRUE' | 'FALSE'.

Note that recursion can be direct if a trigger activates another instance of itself or indirect if the
activation sequence is T1 → T2 → T1. The recursive trigger option only copes with the direct recursion,
the indirect kind is dealt with the nested trigger option.

2.4.4 Trigger management

Trigger management includes the task of altering, renaming, viewing, dropping and disabling triggers:

� Triggers can be modi�ed with the ALTER TRIGGER statement, in which the new de�nition is provided.

� Triggers can be renamed with the sp_rename system stored procedure as

sp_rename @objname = <old-name>, @newname = <new-name>

� Triggers can be viewed by querying system tables or by using the sp_helptrigger and sp_helptext system
stored procedures as

sp_helptrigger @tabname = <table-name>

sp_helptext @objname = <trigger-name>

� Triggers can be deleted with the DROP TRIGGER statement.

� Triggers can be enable and disable using the ENABLE TRIGGER and DISABLE TRIGGER clauses of
the ALTER TABLE statement.

Example 2.10. Let's work with a database with the following tables:

� Books(TitleID, Title, Publisher, PubDate, Edition, Cost, QtySold)

� Orders(OrderId, CustomerId, Amount, OrderDate)

� BookOrders(OrderID, TitleId, Qty)

Here, Books.QtySold is a derived attribute which keeps track of how many copies of the book has been sold.
We can make this updates automatic with the use of the following trigger:

1 CREATE TRIGGER update_book_qtysold ON BookOrders

2 AFTER INSERT , UPDATE , DELETE AS

3 -- add if insertion

4 IF EXISTS (SELECT * FROM INSERTED)

5 BEGIN

6 UPDATE Books

7 SET QtySold = QtySold + (SELECT sum(Qty)

8 FROM INSERTED i

19

3 APPLICATIONS OF ACTIVE RULES

9 WHERE titleId = i.titleId)

10 WHERE titleID IN (SELECT i.titleID FROM INSERTED i)

11 END

12 -- subtract if deletion

13 IF EXISTS (SELECT * FROM DELETED)

14 BEGIN

15 UPDATE Books

16 SET QtySold = QtySold - (SELECT sum(Qty)

17 FROM DELETED d

18 WHERE titleId = d.titleId)

19 WHERE titleID IN (SELECT d.titleID FROM DELETED d)

20 END

� When there is an insertion in BookOrders, the trigger �res and adds the corresponding quantity.

� When there is a deletion, the trigger �res and subtracts the corresponding quantity.

� An update creates both tables, so we would add and subtract to cope with the modi�cation.

3 Applications of Active Rules

Rules provide programmers with an e�ective tool to support both internal applications and external applications:

� Internal applications: rules support function provided by speci�c subsystems in passive DBSMs, such
as the management of IC, derived data, replicated data, version maintenance,... Rules can usually be
declaratively speci�ed, generated by the system and hidden to the user.

� External applications: these refer to the application of business rules to the data stored. Rules allow
to perform computations that would usually need to be expressed in application code. In addition, rules
provide many times a natural way to model reactive behavior of the data, as rules respond to external
events and perform action in consequence. This approach becomes specially interested when rules express
central policies, i.e., knowledge common to applications, centralizing the e�ort and reducing the cost.

Some examples of applications that can bene�t from active technology and business rules are:

� Monitoring access to a building and reacting to abnormal circumstances.

� Watching evolution of share values on stock market and triggering trading actions.

� Managing inventory to follow stock variations.

� Managing a netwrok to for energy distribution.

� Airway assignment in air tra�c control.

As can be seen from these examples, a frequent case of application-speci�c rules are alterters, whose actions
signal certain conditions that occur with ot without changing the database.

3.1 A summary of Integrity Constraints

The integrity of a database refers to the consistency and conformity of the data with the database schema
and its constraints. Thus, an integrity constraint is any assertion on the schema which is not de�ned in the
data-structure aprt of the schema. Constraints declaratively specify conditions to be satis�ed by the data at all
times, so checking for integrity violations is done for every update of the state of the database.

Integrity constraints can be static if the predicates are evaluated on database states or dynamic if the
predicates are evaluated on state transitions. They can also be classi�ed as built-in if they are de�ned by
special DDL (Data De�nition Language) constructs (such as keys, nonnull values,...) or adhoc, which are
arbitrarily complex domain-dependent constraints.

In practice, integrity maintenance is achieved through:

� DBMS checks built-in constraint with automatically generated triggers.

20

3.1 A summary of Integrity Constraints 3 APPLICATIONS OF ACTIVE RULES

� DBMS supports limited forms of adhoc constraints.

� The remaining constraints are implemented as active rules (triggers).

The process of rule generation may be partially automated:

1. The possible causes of violation are the events for the activation of the rule.

2. The declarative formulation of the constraint is the rule condition.

3. To avoid or eliminate the violation, an action is taken. The simplest approach is to rollback the transaction,
this is done by abort rules, in contrast, the richer approach provides a domain-dependent corrective
action, via repair rules.

Thus:

� Abort rules check that integrity is not violation and prevent the execution of an operation which would
cause the violation of the integrity by means of the ROLLBACK command.

� Repair rules are more sophisticated than abort rules, because they make use of application-domain
semantics to de�ne a set of actions that restore integrity

Example 3.1. Let's do a referential integrity example in Starburst:
We have relations Emp(EmpNo,DeptNo) and Dept(DNo). We have the regerential integrity condition

Emp [DeptNo] ⊂ Dept [DNo] ,

so the possible violations can come from an INSERT into Emp, a DELETE from Dept, and UPDATE of
Emp[DeptNo] and an update of Dept[Dno]. The condition on tuples of Emp for not violating the constraint is:

1 EXISTS (SELECT * FROM Dept WHERE DNo = Emp.DeptNo)

Its denial form, so the constraint is violated is:

1 NOT EXISTS (SELECT * FROM Dept WHERE DNo = Emp.DeptNo)

Thus, we can create abort rules as:

1 CREATE RULE DeptEmp1 ON Emp

2 WHEN INSERTED , UPDATED(DeptNo)

3 IF EXISTS (SELECT * FROM Emp

4 WHERE NOT EXISTS (SELECT * FROM Dept WHERE DNo=Emp.DeptNo))

5 THEN ROLLBACK;

6

7 CREATE RULE DeptEmp2 ON Dept

8 WHEN DELETED , UPDATED(DNo)

9 IF EXISTS (SELECT * FROM Emp

10 WHERE NOT EXISTS (SELECT * FROM Dept WHERE DNo=Emp.DeptNo))

11 THEN ROLLBACK;

Note that one rule is neccessary for each relation.
Note also that the de�ned rules are inne�cient, because the computation of the condition checks the whole

database. Rules can assume that the constraint is veri�ed in the initial state, so it su�ces to compute the
condition relative to transition tables.

Now, we are de�ning a repair rule that:

� If an employee is inserted with a wrong value of DeptNo, it is set to NULL.

� If the DeptNo of an employee is updated with a wrong value of DeptNo, it is set to 99.

� If a department is deleted or its DNo is updated, then all employees from this department are deleted.

21

3.2 Management of Derived Data 3 APPLICATIONS OF ACTIVE RULES

1 CREATE RULE DeptEmp1 ON Emp

2 WHEN INSERTED ,

3 IF EXISTS (SELECT * FROM INSERTED I

4 WHERE NOT EXISTS (SELECT * FROM Dept D WHERE D.DNo=I.DeptNo))

5 THEN UPDATE Emp

6 SET DeptNo = NULL

7 WHERE EmpNo IN (SELECT EmpNo FROM INSERTED I) AND

8 NOT EXISTS (SELECT * FROM Dept D WHERE D.DNo=Emp.DeptNo);

9

10 CREATE RULE DeptEmp2 ON Emp

11 WHEN UPDATED(DeptNo)

12 IF EXISTS (SELECT * FROM INSERTED I JOIN DELETED D ON I.EmpNo = D.EmpNo

13 WHERE NOT EXISTS (SELECT * FROM Dept D WHERE D.DNo=Emp.DeptNo))

14 THEN UPDATE Emp

15 SET DeptNo = 99

16 WHERE EmpNo IN (SELECT EmpNo FROM INSERTED I JOIN DELETED D ON I.EmpNo = D.EmpNo)

17 AND NOT EXISTS (SELECT * FROM Dept D WHERE D.DNo = Emp.DeptNo);

18

19 CREATE RULE DeptEmp3 ON Dept

20 WHEN UPDATED(DNo), DELETED

21 IF EXISTS (SELECT * FROM Emp

22 WHERE EXISTS(SELECT * FROM DELETED D WHERE D.DNo = Emp.DeptNo))

23 THEN DELETE FROM Emp

24 WHERE EXISTS(SELECT * FROM DELETED D WHERE D.DNo = Emp.DeptNo));

3.2 Management of Derived Data

A view can be seen as a query on the DB which returns a relation or a class that can be used as any other
relation or class. A derived attribute is an attribute that can be computed from other attributes in the DB.
Both a view and a derived attribute can be expressed with declarative query language or deductive rules. There
are two strategies for derived data:

1. Virtually supported: their content is computed on demand.

2. Materialized: their content is stored in the database, and it must be recomputed whenever the source
of data is changed.

3.2.1 Virtual views with rules

When an application queries a view, a rule is triggered on the request and the action substitutes and evaluates
the view de�nition. It requires an event, triggered by queries, and an INSTEAD OF clause in rule language.

There exist two basic strategies:

� Refresh: recompute the view from scratch after each update of the source data.

� Incremental: compute changes to the view from changes in the source relations, using positive and
negative deltas (a delta shows the changes experienced in the database. INSERTED and DELETED are
one way to implement deltas).

The rule generation can be automated. Refresh rules are simple, but can be very ine�cient. On the other hand,
incremental rules depend on the structure of derivation rules, and can be complex.

Example 3.2. Imagine we have the following view de�nition:

1 DEFINE VIEW HighPaidDept AS

2 (SELECT DISTINCT Dept.Name

3 FROM Dept , Emp

4 WHERE Dept.Dno = Emp.DeptNo AND Emp.Sal > 50000);

So this view holds are departments in which some employee earns more than 50k¿ a year. This view can change
whenever an employee is inserted or deleted, its department is changed or is salary is changed; and whenever a
department is inserted or deleted, or its Dno is updated.

A refresh rule de�ned in Starburst to handle this changes is:

22

3.3 Business Rules: Advantages and Di�culties 3 APPLICATIONS OF ACTIVE RULES

1 CREATE RULE RefreshHighPaidDept1 ON Emp

2 WHEN INSERTED , DELETED , UPDATED(DeptNo), UPDATED(Sal)

3 THEN DELETE * FROM HighPaidDept;

4 INSERT INTO HighPaidDept

5 (SELECT DISTINCT Dept.Name

6 FROM Dept , Emp

7 WHERE Dept.Dno = Emp.DeptNo AND Emp.Sal > 50000);

8

9 CREATE RULE RefreshHighPaidDept2 ON Dept

10 WHEN INSERTED , DELETED , UPDATED(Dno)

11 THEN DELETE * FROM HighPaidDept;

12 INSERT INTO HighPaidDept

13 (SELECT DISTINCT Dept.Name

14 FROM Dept , Emp

15 WHERE Dept.Dno = Emp.DeptNo AND Emp.Sal > 50000);

As we can see, all elements from the view are deleted, and the view is recomputed entirely. The incremental
approach is more complex. As an example, let's de�ne the rule for the case of Insert Dept:

1 CREATE RULE IncHighPaidDept1 ON Dept

2 WHEN INSERTED

3 THEN INSERT INTO HighPaidDept

4 (SELECT DISTINCT Dept.Name

5 FROM INSERTED I, Emp

6 WHERE I.Dno = Emp.DeptNo AND Emp.Sal > 50000);

3.2.2 Replication with rules

Replication consists on storing several copies of the same information. This is a common practice in distributed
databases. Keeping fully synchronized copies is usually very costly and unnecessary, so it is common to use
aynchronous techniques to propagate changes between nodes.

� Assymmetric replication: in this case there exists a primary copy, in which changes are performed, and
several secondary copies, which are read only and are updated asynchronously. The capture module
monitors changes made by applications to the primary copy, and the application module propagates
these changes to the secondary copies.

� Symmetric replication: all copies accept updates asynchronously and each of them has a capture
and an application modules. It is needed to be careful, because simultaneous updates may cause loss of
consistency.

Example 3.3. An example of capturing changes into deltas in Starburst:

1 CREATE RULE Capture1 ON PrimaryCopy

2 WHEN INSERTED

3 THEN INSERT INTO PosDelta (SELECT * FROM INSERTED);

4

5 CREATE RULE Capture2 ON PrimaryCopy

6 WHEN DELETED

7 THEN INSERT INTO NegDelta (SELECT * FROM DELETED);

8

9 CREATE RULE Capture3 ON PrimaryCopy

10 WHEN UPDATED

11 THEN INSERT INTO PosDelta (SELECT * FROM INSERTED);

12 INSERT INTO NegDelta (SELECT * FROM DELETED);

The deltas are applied to the copies with a prede�ned policy, e.g. once very hour.

3.3 Business Rules: Advantages and Di�culties

3.3.1 Advantages

� Active rules can impose a central consistent behavior independent of the transactions that cause their
execution.

23

3.4 A case study: Energy Management System 3 APPLICATIONS OF ACTIVE RULES

� Active rules enforce data management policies that no transaction can violate.

� Activities redundantly coded in several applications programs with passive DBMSs can be abstracted in
a single version as a rule in an active DBMS.

� Data management policies can evolve by just modifying the rules on the database, instead of the application
programs (knowledge independence).

3.3.2 Di�culties

� Rule organization and content are often hard to control and to specify declaratively (i.e. the rules are
hard to code!).

� Understanding active rules can be di�cult, because they can react to intricate event sequences and the
outcome of rule processing can depend on the order of the event ocurrences and the rule scheduling, which
can be hard to analyze in complex systems.

� There are no easy-to-use nor one-�ts-all techniques for designing, debugging, verifying and monitoring
rules.

3.4 A case study: Energy Management System

This is an example of an application modeled with active rules, covering the business process:

'Management of the Italian electrical power distribution network.'

The operational network is a forest of trees, connecting power distributors to users. The operating conditions
are monitored constantly with frequent recon�gurations: the structure of the network is dynamic. The topology
is modi�ed less frequently (we can consider it static). The objective is to transfer the exact power from
distributors to users through nodes and directed branches connecting pairs of nodes.

In this scenario, active rules are used to respond to input transactions asking for:

� Recon�gurations due to new users.

� Changes in their required power.

� Changes in the assignment of wires.

The schema of the database is:

User(UserId, BranchIn, Power) foreign key (BranchIn) References Branch

Branch(BranchId, FromNode, ToNode, Power)

Node(NodeId, BranchIn, Power) foreign key (BranchIn) References Branch

Distributor(NodeId, Power, MaxPower)

Wire(WireId, BranchId, WireType, Power) foreign key (BranchId) references Branch foreign key (WirteType)

references WireType

WireType(WireTypeId, MaxPower)

The network is composed of sites anc onnections between pairs of sites:

� Sites comprise:

� Power stations: distributors where power is generated and fed into the network.

� Intermediate nodes: nodes where power is transferred to be redistributed across the network.

� Final users of electrical power.

� Connections are called branches:

� class Branch describes all connections between pairs of sites.

24

3.4 A case study: Energy Management System 3 APPLICATIONS OF ACTIVE RULES

� Several Wires are placed along the branches.

� Wires are made of a given WireType, each type carrying a maximum power.

� Branches can be dinamically added or dropeed to the network.

The business rules are the following:

� Several user requests are gathered in a transaction.

� If the power requested on wires excees the maximum power of the wire type, rules change or add wires in
the relevant branches.

� Rules propagate changes up in the tree, adapting the network to new user needs.

� A transaction fails if the maximum power requested from some distributor exceeds the maximum power
available at the distributor (in that case, the static network needs to be redesigned, but this is out of our
scope).

� To avoid unnecessary rollbacks, rules propagate reductions of power �rst, then increases of power. This
requires setting the order in which the triggers execute4.

3.4.1 Connect a new user

A new user is connecting to a node with the following procedure:

1 CREATE PROCEDURE insertUser(@Node char (3), @Power int) AS

2 DECLARE @User char (3), @Branch char (3), @Wire char (3)

3 EXEC @User = nextUserId

4 EXEC @Branch = nextBranchId

5 EXEC @Wire = nextWireId

6 INSERT INTO Branch (BranchId , FromNode , ToNode , Power)

7 VALUES (@Branch , @User , @Node , @Power)

8 INSERT INTO Wire (WireId , Branch , WireType , Power)

9 VALUES (@Wire , @Branch , 'WT1', @Power)

10 INSERT INTO User (UserId , BranchIn , Power)

11 VALUES (@User , @Branch , @Power);

The node to which a user is connected is determined by an external application: usually its closest node.
'WT1' is the basic wire type. nextUserId, nextBranchId and nextWireId procedures are used to obtain the next
identi�er of a user, branch or wire.

3.4.2 Propagation of power reduction from a user

If a user requires less power, this change needs to be propagated to its input branch:

1 CREATE TRIGGER T1_User_Branch ON User

2 AFTER UPDATE AS

3 -- If some user has decreased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.UserId = D.UserId WHERE D.Power > I.Power)

6 BEGIN

7 UPDATE Branch

8 -- Decrease the power consumption by the difference between the past and the new values

9 SET Power = Power - (SELECT D.Power - I.Power

10 FROM Inserted I JOIN Deleted D ON I.UserId = D.UserId

11 WHERE I.BranchIn = BranchIn AND D.Power > I.Power) -- Make sure the branch is the

correct one

12 WHERE BranchId IN (SELECT BranchIn FROM Inserted)

13 END;

4This means we cannot perform this use case in SQL Server because the order of the rules cannot be speci�ed.

25

3.4 A case study: Energy Management System 3 APPLICATIONS OF ACTIVE RULES

3.4.3 Propagation of power reduction from a node

If a node require less power, propagate the change to its input branch:

1 CREATE TRIGGER T2_Node_Branch ON Node

2 AFTER UPDATE AS

3 -- If some node has decreased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.NodeId = D.NodeId WHERE D.Power > I.Power)

6 BEGIN

7 UPDATE Branch

8 -- Decrease the power consumption by the difference between the past and the new values

9 SET Power = Power - (SELECT D.Power - I.Power

10 FROM Inserted I JOIN Deleted D ON I.NodeId = D.NodeId

11 WHERE I.BranchIn = BranchIn AND D.Power > I.Power) -- Make sure the branch is the

correct one

12 WHERE BranchId IN (SELECT BranchIn FROM Inserted)

13 END;

3.4.4 Propagation of power reduction from a branch to a node

If a branch connected to a node requires less power, propagate the change to its input node.

1 CREATE TRIGGER T3_Branch_Node ON Branch

2 AFTER UPDATE AS

3 -- If some branch has decreased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.BranchId = D.BranchId

6 WHERE D.Power > I.Power AND I.ToNode IN (SELECT NodeId FROM Node)) -- toNode is not a

foreign key , so we need to make sure it is a node

7 BEGIN

8 UPDATE Node

9 -- Decrease the power consumption by the difference between the past and the new values

10 SET Power = Power - (SELECT D.Power - I.Power

11 FROM Inserted I JOIN Deleted D ON I.BranchId = D.BranchId

12 WHERE I.ToNode = NodeId AND D.Power > I.Power) -- Make sure the node is the correct

one

13 WHERE NodeId IN (SELECT toNode FROM Inserted)

14 END;

3.4.5 Propagation of power reduction from a branch to a distributor

If a branch connected to a distributor requires less power, propagate the change to the distributor.

1 CREATE TRIGGER T4_Branch_Distributor ON Branch

2 AFTER UPDATE AS

3 -- If some branch has decreased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.BranchId = D.BranchId

6 WHERE D.Power > I.Power AND I.ToNode IN (SELECT NodeId FROM Distributor)) -- toNode is not

a foreign key , so we need to make sure it is a distributor

7 BEGIN

8 UPDATE Distributor

9 -- Decrease the power consumption by the difference between the past and the new values

10 SET Power = Power - (SELECT D.Power - I.Power

11 FROM Inserted I JOIN Deleted D ON I.BranchId = D.BranchId

12 WHERE I.ToNode = NodeId AND D.Power > I.Power) -- Make sure the node is the correct

one

13 WHERE NodeId IN (SELECT BranchIn FROM Inserted)

14 END;

3.4.6 Propagation of power increase from a user

If a user requires more power, propagate the change to its input branch.

26

3.4 A case study: Energy Management System 3 APPLICATIONS OF ACTIVE RULES

1 CREATE TRIGGER T5_User_Branch ON User

2 AFTER UPDATE AS

3 -- If some user has increased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.UserId = D.UserId WHERE D.Power < I.Power)

6 BEGIN

7 UPDATE Branch

8 -- Increase the power consumption by the difference between the new and the past values

9 SET Power = Power - (SELECT D.Power - I.Power

10 FROM Inserted I JOIN Deleted D ON I.UserId = D.UserId

11 WHERE I.BranchIn = BranchIn AND D.Power < I.Power) -- Make sure the branch is the

correct one

12 WHERE BranchId IN (SELECT BranchIn FROM Inserted)

13 END;

3.4.7 Propagation of power increase from a node

If a node require more power, propagate the change to its input branch:

1 CREATE TRIGGER T6_Node_Branch ON Node

2 AFTER UPDATE AS

3 -- If some node has increased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.NodeId = D.NodeId WHERE D.Power < I.Power)

6 BEGIN

7 UPDATE Branch

8 -- Increase the power consumption by the difference between the new and the past values

9 SET Power = Power - (SELECT D.Power - I.Power

10 FROM Inserted I JOIN Deleted D ON I.NodeId = D.NodeId

11 WHERE I.BranchIn = BranchIn AND D.Power < I.Power) -- Make sure the branch is the

correct one

12 WHERE BranchId IN (SELECT BranchIn FROM Inserted)

13 END;

3.4.8 Propagation of power increase from a branch to a node

If a branch connected to a node requires more power, propagate the change to its input node.

1 CREATE TRIGGER T7_Branch_Node ON Branch

2 AFTER UPDATE AS

3 -- If some branch has increased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.BranchId = D.BranchId

6 WHERE D.Power < I.Power AND I.ToNode IN (SELECT NodeId FROM Node)) -- toNode is not a

foreign key , so we need to make sure it is a node

7 BEGIN

8 UPDATE Node

9 -- Increase the power consumption by the difference between the new and the past values

10 SET Power = Power - (SELECT D.Power - I.Power

11 FROM Inserted I JOIN Deleted D ON I.BranchId = D.BranchId

12 WHERE I.ToNode = NodeId AND D.Power < I.Power) -- Make sure the node is the correct

one

13 WHERE NodeId IN (SELECT toNode FROM Inserted)

14 END;

3.4.9 Propagation of power increase from a branch to a distributor

If a branch connected to a distributor requires more power, propagate the change to the distributor.

1 CREATE TRIGGER T8_Branch_Distributor ON Branch

2 AFTER UPDATE AS

3 -- If some branch has increased its power consumption

4 IF EXISTS (SELECT * FROM Inserted I JOIN Deleted D

5 ON I.BranchId = D.BranchId

6 WHERE D.Power < I.Power AND I.ToNode IN (SELECT NodeId FROM Distributor)) -- toNode is not

a foreign key , so we need to make sure it is a distributor

27

3.4 A case study: Energy Management System 3 APPLICATIONS OF ACTIVE RULES

7 BEGIN

8 UPDATE Distributor

9 -- Increase the power consumption by the difference between the new and the past values

10 SET Power = Power - (SELECT D.Power - I.Power

11 FROM Inserted I JOIN Deleted D ON I.BranchId = D.BranchId

12 WHERE I.ToNode = NodeId AND D.Power < I.Power) -- Make sure the node is the correct

one

13 WHERE NodeId IN (SELECT BranchIn FROM Inserted)

14 END;

3.4.10 Excess power requested from a distributor

If the power requested from a distributor exceeds its maximum, rollback the entire transaction.

1 CREATE TRIGGER T9_Distributor ON Distributor

2 AFTER UPDATE AS

3 -- If some distributor has increased its power consumption exceeding its maximum capacity

4 IF EXISTS (SELECT * FROM Inserted I WHERE I.Power > I.MaxPower)

5 BEGIN

6 RAISERROR 13000 'Maximum capacity of the distributor exceeded '

7 ROLLBACK

8 END;

3.4.11 Propagate power change from a branch to its wires

If the power of a branch is changed, distributes the change equally on its wires.

1 CREATE TRIGGER T10_Branch_Wire ON Branch

2 AFTER UPDATE AS

3 BEGIN

4 UPDATE Wire

5 -- Divide the difference between past and new power among all wires and subtract it from every

wire

6 -- note that this works independently of the sign of the change

7 SET Power = Power - (

8 (SELECT D.Power - I.Power

9 FROM Inserted I JOIN Deleted D ON I.BranchId = D.BranchId

10 WHERE I.BranchId = Branch)

11 /

12 (SELECT COUNT (*) FROM Wire W JOIN Inserted I ON I.BranchId = W.Branch

13 WHERE W.Branch = Branch)

14)

15 WHERE Branch IN (SELECT BranchId FROM Inserted)

16 END;

3.4.12 Change wire type if power passess threshold

If the power on a wire goes above the allowed threshold, change the wire type.

1 CREATE TRIGGER T11_Wire_Type on Wire

2 AFTER INSERT , UPDATE AS

3 IF EXISTS (SELECT * FROM Inserted I JOIN WireType WT

4 ON WireType = WireTypeId

5 WHERE I.Power > WT.MaxPower -- If the power overpass the maximum allowed

6 AND EXISTS (SELECT * FROM WireType WT1 WHERE WT1.MaxPower > I.Power)) -- And there is a

wiretype which can accept the higher power

7 BEGIN

8 UPDATE Wire

9 SET WireType = (SELECT WireTypeId

10 FROM WireType WT

11 WHERE WT.MaxPower >= Power AND

12 NOT EXISTS(-- There are no two different types with the same maxPower , so we take

the first wireType whose maxPower is sufficient

13 SELECT * FROM WireType WT1

14 WHERE WT1.MaxPower < WT.MaxPower AND WT1.MaxPower >= Power))

15 WHERE WireId IN (SELECT WireId FROM INSERTED I JOIN WireType WT ON WireType = WireTypeId --

make sure we take the appropriate WireId

28

3.4 A case study: Energy Management System 3 APPLICATIONS OF ACTIVE RULES

16 WHERE I.Power > WT.MaxPower AND

17 EXISTS (SELECT * FROM WireType WT1 WHERE WT1.MaxPower > I.Power))

18 END;

3.4.13 Add a wire to a branch

If there is no suitable wire type, add another wire to the branch.

1 CREATE TRIGGER T12_Wire on Wire

2 AFTER INSERT , UPDATE AS

3 IF EXISTS (SELECT * FROM Inserted I JOIN WireType WT

4 ON WireType = WireTypeId

5 WHERE I.Power > WT.MaxPower

6 AND I.Power > (SELECT MAX(MaxPower) FROM WireType)) -- the requested power is greater

than the allowed for every wiretype

7 BEGIN

8 DECLARE @nextWire char (3), @BranchId char (3), @WireId char (3), @Power real , @MaxPower real

9 DECLARE wires_cursor CURSOR FOR

10 SELECT I.WireId , I.BranchId , I.Power , WT.MaxPower

11 FROM Inserted I JOIN WireType WT ON WireType = WireTypeId

12 WHERE I.Power > WT.MaxPower

13 AND I.Power > (SELECT MAX(MaxPower) FROM WireType)

14 OPEN wires_cursor

15 FETCH NEXT FROM wires_cursor INTO @WireId , @BranchId , @Power , @MaxPower

16 WHILE @@FETCH_STATUS = 0

17 BEGIN

18 EXEC @nextWire = nextWireId

19 INSERT INTO Wire (WireId , BranchId , WireType , Power) VALUES (@nextWire , @BranchId , 'WT1',

@Power -0.8* @MaxPower)

20 FETCH NEXT FROM wires_cursor INTO @WireId , @BranchId , @Power , @MaxPower

21 END

22 CLOSE wires_cursor

23 DEALLOCATE wires_cursor

24

25 UPDATE Wire

26 SET Power = (SELECT 0.8* MaxPower FROM WireType WT WHERE WT.WireTypeId = WireType)

27 WHERE Power > (SELECT MAX(MaxPower) FROM WireType)

28 END;

29

4 INTRODUCTION

Part II

Graph Databases

4 Introduction

Relational DBMSs are too rigid for Big Data scenarios, and not the best option for storing unstructured data.
The one-size-�ts-all approach is no longer valid in many scenarios and RDBMSs are hard to scale for billions of
rows, because data structures used in RDBMSs are optimized for systems with small amounts of memory.

NoSQL technologies do not use the relational model for storing data nor retrieving it. Also, they don't
generally have the concept of schema, so �elds can be added to any record as desired, without control. These
characteristics provide ease to run on clusters as well as an increased scaling capability, with horizontal scalability
in mind. But these gains are not free: there is a trade-o� in which the traditional concept of consistency gets
harmed. For example, ACID (Atomic, Consistent, Isolated, Durable) transactions are not fully supported most
of the times.

There are several types of NoSQL databases, such as Key-Value stores, Column stores, Document databases,...
We are going to focus on Graph Databases.

4.1 CAP theorem

De�nition 4.1. The consistency of a database is full�lled when all updates happen equally for all
users of the database.
The availability guarantees that every request receives a response, whether it succeeded or failed.
The partition tolerance means that the system is able to operate despite arbitrary message lost or
failure of part of the system.

A database has, ideally, this three properties full�lled. But the CAP theorem ensures that this is impossible:

Theorem 4.1. CAP Theorem

A distributed data system cannot guarantee consistency (C), availability (A) and partition tolerance (P),
but only any combination of two of them.

Remark 4.1. If the system needs to be distributed, then partition tolerance is a must. So, in practice, there is
a decision to choose between full�lling consistency or availability for distributed systems.

Remark 4.2. Nonetheless, even the perfect form of the three properties cannot be guaranteed at once, it is
possible to provide fairly good levels of the one that is not optimal.

De�nition 4.2. The eventual consistency assumption: in the absence of new writes, consistency
will be acheived eventually, and all replicas that are responsible for a data item will agree on the same
version and return the last updated value.

With fewer replicas in the system, R/W operations complete more quickly, improving latency.

4.2 Graph DB model: graphs

In graph databases, the data and/or the schema are represented by graphs, or by data structures that
generalize the notion of graph: hypergraphs.

The integrity constraints enforce data consistency. Constraints can be grouped in: schema-instance
consistency, identity and referencial integrity, and functional and inclusion dependencies.

The data manipulation is expressed by graph transfromations, or by operations whose main primitives
are on graph features, like paths, neighborhoods, subgraphs, connectivity and graph statistics.

30

4.3 The Resource Description Framework (RDF) Model 4 INTRODUCTION

4.3 The Resource Description Framework (RDF) Model

RDF allows to express facts, such as 'Ana is the mother of Julia.', but we'd like to be able to express more
generic knowledge, like 'If somebody has a daughter, then that person is a parent.'. This kind of knowledge
is called schema knowledge. The RDF schema allows us to do some schema knowledge modeling, and the
Ontology Web Language (OWL) gives even more expressivity.

A class is a set of things or resources. In RDF, everything is a resource, that belongs to a class (or several
classes). The classes can be arranged in hierarchies. Every resource is a member of the class rdfs:Class.

Example 4.1. A hierarchy of classes in RDF:

The di�erent resources are labelled with:

� rdfs:Resource: class of all resources.

� rdf:Property: class of all properties.

� rdfs:XMLLiteral: class of XML resources.

� rdfs:Literal: each datatype is a subclass.

� rdfs:Bag, rdf:Alt, rdf:Seq, rdfs:Container, rdf:List, rdf:nil, rdfs:ContainerMembershipProperty.

� rdfs:Datatype: class of all datatypes.

� rdfs:Statement.

In RDF, there exists implicit knowledge, which can be inferred using deduction. This knowledge doesn't
need to be stated explicitly: which statements are logical consequences from others is governed by the formal
semantics.

Example 4.2. If a RDF document contains 'u rdf:type ex:Textbook' and 'ex:Textbook rdfs:subClassOf ex:Book',
then it is deduced that 'u rdf:type ex:Book'.

As can be seen, RDF are usually stored in triple stores or quad stores, which are a relational DB. This
means that it is usually not implemented natively as a graph database, which makes it harder to do inference.
It is more usually used as a metadata storage.

4.4 The property graph data model

This model is simpler: in this case, the model is a graph, where nodes and edges are annotated with properties.
It is schema-less, meaning there is not an underlying schema to which the data has to adhere. Inference is not
performed.

There are several types of relationships supported by graph databases:

� Attributes: properties that can be uni- or multi- valued.

� Entities: groups of real-world objects.

� Neighborhood relations: structures to represents neighborhoods of an entity.

� Standard abstractions: part-of, composed-by, n-ary associations.

31

4.4 The property graph data model 4 INTRODUCTION

� Derivation and inheritance: subclasses and superclasses, relations of instantiations.

� Nested relations: recursively speci�ed relations.

The abstract data type used is a graph with properties, which is a 4-tuple G = (V,E,Σ, L) such that:

� V is a �nite set of nodes.

� Σ is a set of labels.

� E ⊂ V × V is a set of edges representing labelled binary relationships between elements in V .

� L is a function, L : V × V → 2Σ, meaning that each edge can by annotated with zero or more labels from
Σ.

The basic operations de�ned over a graph are:

� AddNode (G, x): adds node x to G.

� DeleteNode (G, x): deletes x from G.

� Adjacent (G, x, y): tests if there is an edge from x to y in G, i.e., if (x, y) ∈ E.

� Neighbors (G, x): returns all nodes y such that (x, y) ∈ E.

� AdjacentEdges (G, x, y): returns the set of lables of edges going from x to y.

� Add (G, x, y, l): adds an edge between x and y with label l.

� Delete (G, x, y, l): deletes and edge between x and y with label l.

� Reach (G, x, y): tests if there is a path from x to y. A path between x and y is a subset of nodes z1, ..., zn
such that (x, z1) , (zn, y) ∈ E and (zi, zi+1) ∈ E for all i = 1, ..., n − 1. The length of the path is how
many edges there are from x to y.

� Path (G, x, y): return a shorthest path from x to y.

� 2− hop (G, x): return the set of nodes that can be reached from x using paths of length 2.

� n− hop (G, x): returns the set of ndoes that can be reached from x using paths of length n.

The notion of graph can be generalized by that of hypergraph, which is a pair H = (V,E), where V is a
set of nodes, and E ⊂ 2V is a set of non-empty subsets of V , called hyperedges. If V = {v1, ..., vn} and
E = {e1, ..., em}, we can de�ne the incidence matrix of H as the matrix A = (aij)n×m where

aij =

{
1 if vi ∈ ej

0 otherwise

In this case, this is an undirected hypergraph. A directed hypergraph is de�ned similarly by H = (V,E)
where in this case E ⊂ 2V × 2V , meaning that the nodes in the left set are connected to the nodes of the right
one.

4.4.1 Implementation: adjacency list

In an adjacency list, we maintain an array with as many cells as there are nodes in the graph, and:

� For each node, maintain a list of neighbors.

� If the graph is directed, the list is only containing outgoing nodes.

This way it is very cheap to obtain neighbors of a node, but it is not suitable for checking if there is an edge
between two nodes.

Example 4.3. This graph

32

4.4 The property graph data model 4 INTRODUCTION

Is modelled with the following adjacency list:

v1
v2 {(v1,{L2}),(v3,{L4})}
v3
v4 {(v1,{L1})}

4.4.2 Implementation: incidence list

In this case, we maintain two arrays, one with as many cells as nodes, and another one with as many di�erent
edges there are in the graph:

� Vertices and edges are stored as records of objects.

� Each vertex stores incident edges, labeled as source if the edge goes out, or destination if it goes in.

� Each edge stores incident nodes.

Example 4.4. Now, the graph of the previous example is modeled as:

v1 {(dest,L2),(dest,L1)}
v2 {(source,L2),(source,L3)}
v3 {(dest,L3)}
v4 {(source,L1)}

L1 (V4,V1)
L2 (V2,V1)
L3 (V2,V3)

Some properties:

� Storage is O (|V |+ |E|+ |L|).

� Adjacent (G, x, y) is O (|E|), we have to check at most all edges.

� Neighbors (G, x) is O (|E|), we go to node x and for each edge marked as source, we visit it and return
the correspondant destination. At most E checks.

� AdjacentEdges (G, x, y) is again O (|E|).

� Add (G, x, y, l) is O (|E|), as well as delete Delete (G, x, y, l).

4.4.3 Implementation: adjacency matrix

In this case, we maintain a matrix of size n× n, where n is the number of nodes:

� It is a bidimensional graph representation.

� Rows represents source nodes.

� Columnds represent destination nodes.

� Each non-null entry represents that there is an edge from the source node to the destination node.

Example 4.5. In this case, the example is modelled as

33

5 NEO4J

v1 v2 v3 v4
v1
v2 {L2} {L3}
v3
v4 {L1}

Properties:

� The storage is O (|V | × |V |).

� Adjacent (G, x, y) is O (1), we have to check cell (x, y).

� Compute the out-degree of a node is O (|V |), we have to sum its row.

� For the in-degree it is also O (|V |), we have to sum its column.

� Adding an edge between two nodes is O (1).

� Compute all paths of length 4 between any pair of nodes is O
(
|V |4

)
.

4.4.4 Implementation: incidence matrix

In this case, we store a matrix of size n×m, where n is the number of nodes and m is the number of edges:

� It is also a bidimensional graph representation.

� Rows represent nodes.

� Columns represent edges.

� A non-null entry represents that the node is incident to the edge, and in which mode (source or destination).

Example 4.6. The example is represented now as

L1 L2 L3
v1 dest dest
v2 source source
v3 dest
v4 source

Properties:

� The storage is O (|V | × |E|).

� Adjacent (G, x, y) is O (|E|)

� Neighbors(G, x) is O (|V | × |E|).

� AdjacentEdges (G, x, y) is O (|E|).

� Adding or deleting an edge between two nodes is O (|V |).

5 Neo4j

Neo4j is an open source graph DB system implemented in Java which uses a labelled attributed multigraph as
data model. Nodes and edges can have properties, and there are no restrictions on the amount of edges between
nodes. Loops are allowes and there are di�erent types of traversal strategies de�ned.

It provides APIs for Java and Python and it is embeddable or server-full. It provides full ACID transactions.
Neo4j provides a native graph processing and storage, characterized by index-free adjacency, meaning that

each node keeps direct reference to adjacent nodes, acting as a local index and making query time independent
from graph size for many kinds of queries.

Another good property is that the joins are precomputed in the form of stored relationships.
It uses a high level query language called Cypher.

34

5.1 File storage 5 NEO4J

5.1 File storage

Graphs are stored in �les. There are three di�erent objects:

� Nodes: they have a �xed length of 9 B, to make search performant: �nding a node is O (1).

� Its �rst byte is an in-use �ag.

� Then there are 4 B indicating the address of its �rst relationship.

� The �nal 4 B indicate the address of its �rst property.

Node

inUse nextRel nextProp
B B B B B B B B B

� Relationships: they have a �xed length of 33 B.

� Its �rst byte is an in-use �ag.

� It is organized as double linked list.

� Each record contians the IDs of the two nodes in the relationship (4B each).

� There is a pointer to the relationship type (4 B).

� For each node, there is a pointer to the previous and next relationship records (4 B x 2 each).

� Finally, a pointer to the next property (4 B).

Relationship

inUse �rstNode secondNode relType �rstPrevRel �rstNextRel secPrevRel secNextRel nextProp
B B

� Properties: they have a �xed length of 32 B divided in blocks og 8 B.

� It includes the ID of the next property in the properties chain, which is thus a single linked list.

� Each property record holds the property type, a pointer to the property index �le, holding the
property name and a value or a pointer to a dynamic structure for long strings or arrays.

Property
propType propIdxFile value nextProp

B B

5.1.1 Caching

Neo4j uses a cache to divide each store into regions, called pages. The cache stores a �xed number of pages
per �le, which are replaces using a Least Frequently Used strategy.

The cache is optimized for reading, and stores object representationsof nodes, relationships, and properties,
for fast path traversal. In this case, node objects contain properties and references to relationships, while
relationships contain only their properties. This is the opposite of what happens in disk storage, where most
informaiton is in the relationship records.

5.2 Cypher

Cypher is the high level query language used by Neo4j for creating nodes, updating/deleting information and
querying graphs in a graph database.

Its functioning is di�erent from that of the relational model. In the relational model, we �rst create the
structure of the database, and then we store tuples, which must be conformant to the structure. The foreign
keys are de�ned at the structural level. In Neo4j, nodes and edges are directly created, with their properties,
labels and types as structural information, but no schema is explicitly de�ned. The topology of the graph can
be thought as analogous to the foreign key in the relational model, but de�ned at the instance level.

35

5.2 Cypher 5 NEO4J

5.2.1 Nodes

A node is of the form
(v : l1 : ... : ln {P1 : v1, ..., Pk : vk})

where v is the node variable, which identi�es the node in an expression, : l1 : ... : ln is a list of n labels associated
with the node, and {P1 : v1, ..., Pk : vk} is a list of k properties associated with the node, and their respective
assigned values. Pi is the name of the property, vi is the value.

To create an empty node:

1 CREATE (v)

2 RETURN v;

The ID is assigned internally, with a di�erent number each time. It can be reused by the system but should
not be used in applications: it should be considered an internal value to the system. RETURN is used to display
the node:

To create a node with two labels:

1 CREATE (v :l1:l2)

2 RETURN v;

To create a node with one label and 3 properties:

1 CREATE (v :l1 {P1:'v1', P2:'v2', P3:['v3_1','v3_2']})

2 RETURN v;

36

5.2 Cypher 5 NEO4J

A query in Cypher is basically a pattern, which will be full�lled solving the associated pattern-matching
problem.

If we want to add a new label to all nodes previously created:

1 MATCH(n)

2 SET n :newL

3 RETURN n;

To delete a label from those nodes with a certain label:

1 MATCH(n :matchL)

2 REMOVE n :delL

3 RETURN n;

A similar thing can be done with properties, which are referred to as node.propertyName:

1 MATCH(n :matchL)

2 REMOVE n.propName1 , n.propName2

3 RETURN n;

5.2.2 Edges

An edge has the form
(n)− [e : Type {P1 : v1, ..., Pk : vk}]− > (v)

where n is the source node and v is the destination node. The edge is de�ned inside the brackets []. It can
also be de�ned of the form (n) < − [] − (v). e identi�es the edge and Type is a mandatory �eld pre�xed by :.
Finally, we have again a list of k properties and their values.

Imagine we have 3 employees and want to create the relationship that one of them is the manager of the
other two and a date as property. We can do that with:

1 MATCH(n1 :Employee {Name:'1'}) ,(n2 :Employee {Name:'m'}) ,(n3 :Employee {Name:'2'})

2 CREATE (n1)<-[e1:manager_of {From:'Dec22'}]-(n2)-[e2:manager_of {From:'Jan23'}]->(n3)

3 RETURN e1,e2;

5.2.3 Queries

As we have said, Cypher is a high level query language based on pattern matching. It queries graphs expressing
informational or topological conditions.

� MATCH: expresses a pattern that Neo4j tries to match.

� OPTIONAL MATCH: is like an outer join, i.e., if it does not �nd a match, puts null.

� WHERE: it must go together with a MATCH or OPTIONAL MATCH expression. No order can be
assumed for the evaluation of the conditions in the clause, Neo4j will decide.

� RETURN: the evaluation produces subgraphs, and any portion of the match can be returned.

37

5.2 Cypher 5 NEO4J

� RETURN DISTINCT: eliminates duplicates.

� ORDER BY: orders the results with some condition.

� LIMIT: returns only part of the result. Unless ORDER BY is used, no assumptions can be made about
the discarded results.

� SKIP: skips the �rst results. Unless ORDER BY is used, no assumptions can be made about the discarded
results.

In addition:

1. If we don't need to make reference to a node, we can use () with no variable inside.

2. If we don't need to refer to an edge, we can omit it, like (n1)- ->(n2).

3. If we don't need to consider the direction of the edge, we can use - -.

4. If a pattern matches more than one label, we can write the OR condition as | inside the pattern. For
example, (n :l1|:l2) matches nodes with label l1 or label l2.

5. To express a path of any length, use [*]. For a �xed length m use [*m].

6. To indicate boundaries to the length of a path, minimum n and maximum m, use [*n..m]. To only limit
one end use [*n..], [*..m].

Example 5.1. A page X gets a score computed as the sum of all votes given by the pages that references it.
If a page Z references a page X, Z gives X a normalized vote computed as the inverse of the number of pages
references by Z. To prevent votes of self-referencing pages, if Z references X and X references Z, Z gives 0 votes
to X.

We are asked to compute the page rank for each web page. One possible solution is:

1 MATCH (p)-->(r)

2 WITH p, 1/ count(r) AS vote

3 MATCH (p)-->(x)

4 WHERE NOT ((x)-->(p))

5 RETURN x, SUM(vote) AS Rank

6 ORDER BY x.url

The �rst MATCH-WITH computes, for each node, the inverse of the number of outgoing edges, and passes
this number on to the next clause. Now, for each of these p nodes, we look for paths of length 1 where no
reciprocity exists.

Another solution uses COLLECT:

1 MATCH (p)-->(r)

2 WITH p, 1/ count(r) AS vote

3 MATCH (p)-->(x)

4 WHERE NOT ((x)-->(p))

5 RETURN x.url , COLLECT(p.url), SUM(vote) AS rank

6 ORDER BY x.url

In this case, we are using the COLLECT to get the urls that points to x, but x does not point to them, in
addition to just computing the value.

38

6 INTRODUCTION

Part III

Temporal Databases

6 Introduction

There are many applications in which temporal aspects need to be taken into account. Some examples are in
the academic, accounting, insurance, law, medicine,... These applications would greatly bene�t from a built-in
temporal support in the DBMS, which would make application development more e�cient with a potential
increase in performance. In this sense, a temporal DBMS is a DBMS that provides mechanisms to store and
manipulate time-varying information.

Example 6.1. A case study: imagine we have a database for managing personel, with the relation Employee(Name,
Salary, Title, BirthDate). It is easy to know the salary of the employee, or its birthdate:

1 -- Salary

2 SELECT Salary

3 FROM Employee

4 WHERE Name = 'John';

5

6 -- Birthdate

7 SELECT Birthdate

8 FROM Employee

9 WHERE Name = 'John';

But it is often the case that we don't only want to store the current state of things, but also a history. For in-
stance, it can be interesting to store the employment history by extending the relation Employee(Name, Salary,

Title, BirthDate, FromDate, ToDate). A dataset sample for this could be the following:

Name Salary Title BirthDate FromDate ToDate

John 60K Assistant 9/9/60 1/1/95 1/6/95
John 70K Assistant 9/9/60 1/6/95 1/10/95
John 70K Lecturer 9/9/60 1/10/95 1/2/96
John 70K Professor 9/9/60 1/2/96 1/1/97

For the underlying system, the date columns FromDate and ToDate are no di�erent from the BirthDate
column, but it is obvious for us that the meaning is di�erent: FromDate and ToDate need to be understood
together as a period of time.

Now, to know the employee's current salary, the query gets more complex:

1 SELECT Salary

2 FROM Employee

3 WHERE Name = 'John' AND FromDate <= CURRENT_TIMESTAMP AND CURRENT_TIMESTAMP < ToDate; -- The

intervals are [)

Another interesting query that we can think of now is determining the salary history, i.e., all di�erent salaries
earned by the employee and in which period of time the employee was earning that salary. For our example,
the result would be:

Name Salary FromDate ToDate

John 60K 1/1/95 1/6/95
John 70K 1/6/95 1/1/97

But how can we achieve this?

� One possibility is to print all the history, and let the user merge the pertinent periods.

� Another one is to use SQL as a means to perform this operation: we have to �nd those intervals that
overlap or are adjacent and that should be merged.

39

6 INTRODUCTION

One way to do this in SQL is performing a loop that merges them in pairs, until there is nothing else to
merge:

1 CREATE TABLE Temp(Salary , FromDate , ToDate) AS

2 SELECT Salary , FromDate , ToDate

3 FROM Employee

4 WHERE Name = 'John'

5

6 repeat

7 UPDATE Temp T1

8 SET T1.ToDate = (SELECT MAX(T2.ToDate)

9 FROM Temp AS T2

10 WHERE T1.Salary = T2.Salary -- T1 and T2 have the same salary

11 AND T1.FromDate < T2.FromDate -- T1 starts before T2

12 AND T1.ToDate >= T2.FromDate -- T1 does not end before T2 begins

13 AND T1.ToDate < T2.ToDate) -- T1 ends before T2

14 WHERE EXISTS (SELECT *

15 FROM Temp AS T2

16 WHERE T1.Salary = T2.Salary

17 AND T1.FromDate < T2.FromDate

18 AND T1.ToDate >= T2.FromDate

19 AND T1.ToDate < T2.ToDate)

20 until no tuples updated

This loop is executed logN times in the worst case, where N is the number of tuples in a chain of overlapping
tuples. After the loop, we have to deleted extraneous, non-maximal intervals:

1 DELETE FROM Temp T1

2 WHERE EXISTS (

3 SELECT *

4 FROM Temp AS T2

5 WHERE T1.Salary = T2.Salary

6 AND (

7 (T1.FromDate > T2.FromDate AND T1.ToDate <= T2.ToDate) -- T1 is contained in T2 (]

8 OR

9 (T1.FromDate >= T2.FromDate AND T1.ToDate < T2.ToDate) -- T1 is contained in T2 [)

The same thing can be achieved by unifying everything using a single SQL expression as

1 CREATE TABLE Temp(Salary , FromDate , ToDate) AS

2 SELECT Salary , FromDate , ToDate

3 FROM Employee

4 WHERE Name = 'John'

5

6 SELECT DISTINCT F.Salary , F.FromDate , L.ToDate

7 FROM Temp as F, Temp as L

8 WHERE F.FromDate < L.ToDate AND F.Salary = L.Salary -- same salary and F starts before L

9 AND NOT EXISTS (

10 SELECT *

11 FROM Temp AS T

12 WHERE T.Salary = F.Salary

13 AND F.FromDate < T.FromDate AND T.FromDate < L.ToDate -- T happens entirely between F and L

14 AND NOT EXISTS (

15 SELECT *

16 FROM Temp as T1

40

6 INTRODUCTION

17 WHERE T1.Salary = F.Salary

18 AND T1.FromDate < F.FromDate AND T.FromDate <= T1.ToDate)) -- T starts in the middle of T1

, which starts before F

19 AND NOT EXISTS (

20 SELECT *

21 FROM Temp AS T2

22 WHERE T2.Salary = F.Salary

23 AND (

24 (T2.FromDate < F.FromDate AND F.FromDate <= T2.ToDate) -- F starts in the middle of T2

25 OR

26 (T2.FromDate >= L.ToDate AND L.ToDate < T2.ToDate) -- L ends in the middle of T2

27))

This is a complex query, and the logic is that if we want to merge the periods, we want to get a From and a
To such that every period contained between From and To touches or intersect another period, and no period
from outside From and To touches or interesects any of the periods inside:

(f.From, t.To) such that ∀x : (x.From > f.from ∧ x.To < t.To) =⇒ ∃y : (y.From < x.From ∧ x.From ≤ y.To)

∧
∄x : (x.From < f.From ∧ x.To ≥ f.From) ∨ (x.From < t.To ∧ x.To ≥ t.To)

Now, the ∀ cannot be used in SQL, but we can use the fact that ∀x : P (x) ≡ ¬¬ (∀x : P (x)) ≡ ¬ (∃x : ¬P (x)) ≡
∄x : ¬P (x), noting also that ¬ (A =⇒ B) ≡ A ∧ ¬B, and that is the query that we have shown above. An
intuitive visualization is the diagram in Figure 1.

Figure 1: Merging temporal intervals. Blue is permitted; Green, Red and Orange are forbidden.

Another possibility to achieve this temporal features is to make the attributes salary and title temporal,
instead of the whole table. For this, we can split the information of the table into three tables:

Employee(Name, BirthDate)

EmployeeSal(Name, Salary, FromDate, ToDate)

EmployeeTitle(Name, Title, FromDate, ToDate)

Now, getting the salary history is easier, because we only need to query the table EmployeeSal:

1 SELECT Salary , FromDate , ToDate

2 FROM EmployeeSal

3 WHERE Name = 'John'

But, what if we want to obtain the history of the combinations of (salary, title)? We have to perform a
temporal join. Say we have the following tables:

EmployeeSal
Name Salary FromDate ToDate

John 60K 1/1/95 1/6/95
John 70K 1/6/95 1/1/97

EmployeeTitle
Name Title FromDate ToDate

John Assistant 1/1/95 1/10/95
John Lecturer 1/10/95 1/2/96
John Professor 1/2/96 1/1/97

In this case, the answer to our temporal join would be:

41

6 INTRODUCTION

EmployeeSal▷◁EmployeeTitle
Name Salary Title FromDate ToDate

John 60K Assistant 1/1/95 1/6/95
John 70K Assistant 1/6/95 1/10/95
John 70K Lecturer 1/10/95 1/2/96
John 70K Professor 1/2/96 1/1/97

For these, again, we could print the two tables and let the user make the suitable combinations, but it feels
better to solve the problem using SQL. The query can be done as:

1 SELECT S.Name , Salary , Title , S.FromDate , S.toDate

2 FROM EmployeeSal S, EmployeeTitle T

3 WHERE S.Name = T.Name -- join by the name of the employee

4 AND T.FromDate <= S.FromDate

5 AND S.ToDate <= T.ToDate -- CASE 1: period of S contained in period of T

6

7 UNION ALL

8

9 SELECT S.Name , Salary , Title , S.FromDate , T.ToDate

10 FROM EmployeeSal S, EmployeeTitle T

11 WHERE S.Name = T.Name -- join by the name of the employee

12 AND T.FromDate < S.FromDate AND S.FromDate < T.ToDate

13 AND S.ToDate > T.ToDate -- CASE 2: period of S starts inside period of T, and ends

after

14

15 UNION ALL

16

17 SELECT S.Name , Salary , Title , T.FromDate , S.ToDate

18 FROM EmployeeSal S, EmployeeTitle T

19 WHERE S.Name = T.Name -- join by the name of the employee

20 AND S.FromDate < T.FromDate AND T.FromDate < S.ToDate

21 AND T.ToDate > S.ToDate -- CASE 3: period of T starts inside period of S, and ends

after

22

23 UNION ALL

24

25 SELECT S.Name , Salary , Title , T.FromDate , T.toDate

26 FROM EmployeeSal S, EmployeeTitle T

27 WHERE S.Name = T.Name -- join by the name of the employee

28 AND S.FromDate <= T.FromDate

29 AND T.ToDate <= S.ToDate -- CASE 4: period of T contained in period of S

The four cases are depicted in Figure 2.

Figure 2: Temporal join: cases.

If we are using a system with embedded temporal capabilities, i.e., implementing TSQL2 (temporal SQL),
we can let the system do it and just perform a join as we do it usually:

42

7 TIME ONTOLOGY

1 SELECT S.Name , Salary , Title

2 FROM EmployeeSal S JOIN EmployeeTitle T ON S.Name = T.Name

7 Time Ontology

Time can be modelled in several ways, depending on the use case:

� Linear: there is a total order in the instants.

� Hypothetical: the time is linear to the past, but from the current moment on, there several possible
timelines.

� Directed Acyclic Graph (DAG): hypothetical approach in which some possible futures can merge.

� Periodic/cyclic time: such as weeks, months... useful for recurrent processes.

We are going to assume a linear time structure.
Regarding the limits of the timeline, we can classify it:

� Unbounded: it is in�nite to the past and to the future.

� Time origin exists: it is bounded on the left, and in�nite to the future.

� Bounded time: it is bounded on both ends.

Also, the bounds can be unspeci�ed or speci�ed.
We also need to consider the density of the time measures (i.e. what is an instant?). In this sense, we can

classify the timeline as:

� Discrete: the timeline is isomorphic to the integers. This means it is composed of a sequence of non-
descomposable time periods, of some �xed minimal duration, named chronons and between a pair of
chronons there is a �nite number of chronons.

� Dense: in this case, it is isomorphic to the ration numbers, with an in�nite number of instants between
each pair of chronons.

� Continuous: the timeline is isomorphic to the real numbers, and again there is an in�nite amount of
instants between each pair of chronons.

Usually, a distance between chronons can be de�ned.

7.1 TSQL2: Time ontology

TSQL2 uses a linear time structure, bounded on both ends. The timeline is composed of chronons, which is
the smallest possible granularity. Consecutive chronons can be grouped together into granules, giving multiple
granularities and enable to convert from one another. The density is not de�ned and it is not possible to make
questions in di�erent granularities. The implementation is basically as discrete and the distance between two
chronons is the amount of chronons in-between.

43

7.1 TSQL2: Time ontology 7 TIME ONTOLOGY

Temporal Types

� Instant: a chronon in the time line.

� Event: an instantaneous fact, something ocurring at an instant.

� Event ocurrence time: valid-time instant at which the event occurs in the real world.

� Instant set

� Time period: the time between two instants (sometimes called interval, but this con�icts with
the SQL type INTERVAL)

� Time interval: a directed duration of time

� Duration: an amount of time with a known length, but no speci�c starting or ending instants.

� Positive interval: forward motion time.

� Negative interval: backward motion time.

� Temporal element: �nite union of periods.

This way, in SQL92 we have the following Temporal Types:

� DATE (YYYY-MM-DD)

� TIME (HH:MM:SS)

� DATETIME (YYYY-MM-DD HH:MM:SS)

� INTERVAL (no default granularity)

And in TSQL2 we have:

� PERIOD: DATETIME - DATETIME

7.1.1 Time and facts

The valid time of a fact is the time in which the fact is true in the modelled reality, which is independant of
its recording in the database and can be past, present or future.

The transaction time of a fact is when the fact is current in the database and may be retrieved.
These two dimensions are orthogonal.
There are four types of tables:

� Snapshot: these are usual SQL table, in which there is no temporality involved. What there is in the
table is the current truth. They can be modi�ed through time, but we only have access to the current
truth.

� Transaction Time: these tables are a set of snapshots tables, in which the past states can be queried
for information, but they cannot be modi�ed. When the current truth is modi�ed, a snapshot is taken to
preserved the history of changes.

44

8 TEMPORAL CONCEPTUAL MODELING

� Valid time: these are like transaction tables, but in which modi�cation is permitted everywhere.

� Bitemporal: in this case, we have valid time tables that can be taken snapshots to preserve full states.

8 Temporal Conceptual Modeling

Conceptual modeling is important because it focuses on the application, rather than the implementation. Thus,
it is technology independent, which enhances the portability and the durability of the solution. It is also user
oriented and uses a formal, unambiguous speci�cation, allowing for visual interfaces and teh exchange and
integration of information.

8.1 The conceptual manifesto

� Semantically powerful data structures.

� Simple data model, with few clean concepts and standard well-known semantics.

� No ariti�cal time objects.

� Time orthogonal to data structures.

� Various granularities.

� Clean, visual notations.

45

8.1 The conceptual manifesto 8 TEMPORAL CONCEPTUAL MODELING

� Intuitive icons/symbols.

� Explicit temporal relationships and integrity constraints.

� Support of valid time and transaction time.

� Past to future.

� Co-existence of temporal and tradicional data.

� Query languages.

� Complete and precise de�nition of the model.

Figure 3: An example of a temporal model in three di�erent ways.

In Figure 3, we can see three di�erent ways to model a schema. Note how they are di�erent, because the
temporal attributes are dealt with di�erently in each of the models.

8.1.1 MADS temporal data types

Figure 4: The MADS temporal data types.

Time, SimpleTime and ComplexTime are abstract classes.

8.1.2 Temporal objects

A temporal object is marked with the symbol , and it indicates that the object has a set of periods of validity
associated.

For example, if we have the relation Employee (name, birthDate, address, salary, projects (1..n)),
then, an instance of the relation can be:

46

8.1 The conceptual manifesto 8 TEMPORAL CONCEPTUAL MODELING

Peter 8/9/64 Rue de la Paix 5000 {MADS, HELIOS}
[7/94-6/96] [7/97-6/98] Active

[7/96-7/97] Suspended

The red colored text are the life cycle information of the record.
The life cycle of an object can be continuous if there are no gaps between its creation and its deletion, or

discontinuous if such gaps exist.

8.1.3 Non-temporal objects

Non-temporal objects can be modeled with the absence of a lifecycle, or with a default life cycle which encodes
that it is always active. A usual option is to put it as [0,∞].

The TSQL2 policy is that temporal operators are not allowed on non-temporal relations. So if we need
to perform some kind of temporal operation in non-temporal relations, such as a join with a temporal relation,
then we need to use the default life cycle.

Example 8.1. An example is the following query:

1 SELECT Dept , Name , COUNT(PID)

2 FROM Department , Employee

3 WHERE Employee.dept = Department.Dept

4 AND VALID(Employee) OVERLAPS PERIOD '[1/1/96 -31/12/96] '

5 GROUP BY dept

8.1.4 Temporal attributes

A temporal attribute is marked with the symbol , and it indicates that the attribute itself has a lifecycle
associated.

For example, if we have the relation Employee(name, birthDate, address, salary , projects (1..n)),
then, an instance of the relation can be:

Peter 8/9/64 Rue de la Paix
4000 [7/94-6/96]

{MADS, HELIOS}
5000 [6/96-Now]

Temporal complex attributes

It is also possible to have temporal complex attributes, meaning attributes with subattributes. The temporality
can be in either the full attribute, in which case a lifecyle will be attached to the whole attribute, or to a
subattribute, in which case the lifecycle will be attached to only the subattribute.

For example, can have the relation Laboratory(name, projects (1..n) {name, manager, budget})

and the relation Laboratory(name, projects (1..n) {name, manager , budget}).

An example of the �rst relation is:

LBD
{(MADS,Chris,1500)} [1/1/95-31/12/95]

{(MADS,Chris,1500),(Helios,Martin,2000)} [31/12/95-Now]

An example of the second relation is:

LBD

{(MADS,
Stef 1/1/95-31/12/95
Chris 31/12/95-Now

,1500),(Helios, John 31/12/95-Now ,2000)}

In this second case, if we update manager, we add one new element to the manager history. If we update
the project name, we would simply change it, because project is not temporal.

47

8.1 The conceptual manifesto 8 TEMPORAL CONCEPTUAL MODELING

8.1.5 Attribute timestamping properties

� Attribute types / timestamping: none, irregular, regular, instants, durations,...

� Cardinalities: snapshot and DBlifespan.

� Identi�ers: snapshot or DBlifespan.

MADS has no implicit constraint, even if they make sense, such as:

� The validity period of an attribute must be within the lifecycle of the object it belongs to.

� The validity period of a complex attribute is the union of the validity periods of its components.

8.1.6 Temporal generalization

The life cycles are inherited from parent classes, and more temporal attributes can be added. For example:

In this case, Employee is temporal, even though its parent is not. Employee inherits the temporal attribute
address.

Another example:

In this case, both Temporary and Permanent are temporal objects.
In the case in which the child is also declared as temporal, it is called dynamic temporal generalization

and in that case the objects maintains two lifecycles: the one inherited from its parent, and the one de�ned on
itself. For example:

In this case, Permanent employees have two lifecycles: their lifecycle as a permanent and the inherited
lifecycle as an employee. The rede�ned life cycle has to be including the one inherited.

48

8.1 The conceptual manifesto 8 TEMPORAL CONCEPTUAL MODELING

8.1.7 Temporal relationships

A temporal relationship is also marked with the symbol , meaning that the relation between the objects
possesses a lifecycle.

Some usual constraints used in temporal relationships:

� The validity period of a relationship must be within the intersection of the life cycles of the objects
it links.

� A temporal relationship can only link temporal objects.

Again, MADS does not impose any constraints.

Example 8.2. Let's see some temporal relationships.

In this case, a possible data can be:

Employee

e1
John

[7/8/77-Now]4/7/55
Bd Haussman

e2
Peter

[1/2/78-Now]8/10/60
Bd Général Jacques

WorksOn

w1 (e1,p2, 20 [7/8/77-Now]) [7/8/77-Now]

w2 (e1,p1,
20 [7/8/77-1/2/78]
25 [1/2/78-Now]

) [7/8/77-Now]

w2 (e2,p1, 20 [1/2/78-Now]) [1/2/78-Now]

Project

p1
MADS

[1/5/76-Now]Christine
5000

p2
HELIOS

[1/2/78-Now]Yves
6000

Another example, which is slightly di�erent is the following:

In this case, the data can be:
Employee

e1
John

[7/8/77-Now]4/7/55
Bd Haussman

e2
Peter

[1/2/78-Now]8/10/60
Bd Général Jacques

WorksOn

w1 (e1,p2, 20 [7/8/77-Now])

w2 (e1,p1,
20 [7/8/77-1/2/78]
25 [1/2/78-Now]

)

w2 (e2,p1, 20 [1/2/78-Now])

Project

p1
MADS

[1/5/76-Now]Christine
5000

p2
HELIOS

[1/2/78-Now]Yves
6000

Now, only currently valid tuples are kept in the relationship. But for these, the history of hours/week is
maintained.

49

8.1 The conceptual manifesto 8 TEMPORAL CONCEPTUAL MODELING

Figure 5: Allen's temporal operators and how to express them.

8.1.8 Synchronization relationships

They describe temporal constraints between the life cycles of two objects and they are expressed with Allen's
operator extended for temporal elements:

� before (i1, i2): interval i1 ends before i2 starts.

� meets (i1, i2): interval i1 ends just when i2 starts.

� overlaps (i1, i2): intervals i1 and i2 overlaps at some point.

� during (i1, i2): interval i1 is contained inside interval i2.

� starts (i1, i2): intervals i1 and i2 start at the same time.

� finishes (i1, i2): intervals i1 and i2 �nish at the same time.

They can be visually seen in Figure
These relationships express a temporal constraint between the whole life cycles or the active periods.

8.1.9 Example of a temporal schema

50

9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

9 Manipulating Temporal Databases with SQL-92

Data type for periods is not available in SQL-92. Thus, a period is simulated with two Date columns: fromDate
and toDate, indicating the beginning and end of the period, respectively. Some notes:

� The special date '3000-01-01' denotes currently valid.

� The periods are considered closed-open, [).

� A table can be viewes as a compact representation of a sequence of snapshot tables, each one valid on a
particular day.

9.1 Temporal statements

Temporal statement apply to queries, modi�cations, views and integrity constraints. They are:

� Current: applies to the current point in time. Example: what is Bob's current position?

� Time-sliced: applies to some point in time in the past or in the future. Example: what was Bob's
position on 1-1-2007?

� Sequenced: applies to each point in time. Example: what is Bob's position history?

� Non-sequenced: applies to all points in time, ignoring the time-varying nature of tables. Example:
when did Bob changed history?

9.2 Temporal keys

Imagine we have the relation Incumbents(SSN,PCN,FromDate,ToDate) and we want to enforce that each em-
ployee has only one position at a point in time. If we use the key of the corresponding non-temporal table,
(SSN,PCN), then we would not be able to enter the same employee for di�erent periods. Thus, we need
to somehow include the dates in the key. The options are: (SSN,PCN,FromDate), (SSN,PCN,ToDate) or
(SSN,PCN,FromDate,ToDate). None of them captures the constraint that we want to enforce, because there
are overlapping periods associated with the same SSN: we need a sequenced constraint, applied at each point
in time. All constraints speci�ed on a snapshot table have sequenced counterparts, speci�ed on the analogous
valid-time table.

9.2.1 Sequenced primary key

Example 9.1. Employees have only one position at a point in time.

1 CREATE TRIGGER Seq_Primary_Key ON Incumbents FOR INSERT , UPDATE AS

2 IF EXISTS(SELECT *

3 FROM Incumbents I1

4 WHERE 1 < (SELECT COUNT(I2.SSN) -- How many entries

5 FROM Incumbents I2

6 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN -- The same employee

7 AND I1.FromDate < I2.ToDate -- I1 starts before I2 ends

8 AND I1.ToDate > I2.FromDate)) -- I1 ends after I2 starts: the two conditions are

searching for intersections

9 OR EXISTS (SELECT *

10 FROM Incumbents I

11 WHERE I.SSN IS NULL OR I.PCN IS NULL) -- no NULLS values of SSN and PCN can be inserted

12 BEGIN

13 RAISERROR('Violation of sequenced primary key constraint ' ,1,2)

14 ROLLBACK TRANSACTION

15 END

51

9.3 Handling Now 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

Incumbents
SSN PCN FromDate ToDate

111223333 120033 1996-01-01 1996-06-01
111223333 120033 1996-06-01 1996-10-01
111223333 120033 1996-06-01 1996-10-01
111223333 120033 1996-10-01 Now
111223333 120033 1997-12-01 Now

Table 6: Temporal duplicates example.

9.3 Handling Now

We have to decide how to timestamp current data. One alternative is to put NULL in the ToDate, which allows
to identify current records by checking: WHERE ToDate IS NULL. But it possesses some disadvantages:

� Users get confused with a data of NULL.

� In SQL many comparisons with a NULL return false, so we might exclude some rows that should not be
excluded from the query.

� Other uses or NULL are not available.

Another approach is to set the ToDate to the largest value in the timestamp domain: '3000-01-01'. The
disadvantages of this are:

� The DB states that something will be true in the far future.

� 'Now' and 'Forever' are represented in the same way.

9.4 Duplicates

There are di�erent kind of duplicates in temporal databases:

� Value equivalent: the values of the nontimestamp columns are equivalent. Example: all rows in Table
6.

� Sequenced duplicates: when in some instant, the rows are duplicate. Example: rows 1 and 2 in the
table.

� Current duplicates: they are sequenced duplicates at the current instant. Example: rows 4 and 5 in
the table.

� Nonsequenced duplicates: the values of all columns are identical. Example: rows 2 and 3 in the table.

9.4.1 Preventing duplicates

� To prevent value equivalent rows: we de�ne a secondary key using UNIQUE(SSN,PCN).

� To prevent nonsequenced duplicates: UNIQUE(SSN,PCN,FromDate,ToDate).

� To prevent current duplicates: no employee can have two identical positions at the current time:

1 CREATE TRIGGER Current_Dups ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT I1.SSN

3 FROM Incumbents I1

4 WHERE 1 < (SELECT COUNT(I2.SSN)

5 FROM Incumbents I2

6 WHERE I1.SSN = I2.SSN AND I1.PCN=I2.PCN

7 AND I1.FromDate <= CURRENT_DATE AND CURRENT_DATE < I1.ToDate -- I1 is current

8 AND I2.FromDate <= CURRENT_DATE AND CURRENT_DATE < I2.ToDate)) -- I2 is current

9 BEGIN

10 RAISERROR('Transaction allows current duplicates ' ,1,2)

11 ROLLBACK TRANSACTION

12 END

52

9.5 Referential integrity 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

� To prevent current duplicates, assuming no future data, we notice that current data will have the same
ToDate, so we set UNIQUE(SSN,PCN,ToDate).

� To prevent sequenced duplicates, we do as with the trigger for sequenced primary keys, but disregarding
NULL values (because now we are not making a key UNIQUE+NOTNULL, but only UNIQUE):

1 CREATE TRIGGER Seq_Dup ON Incumbents FOR INSERT , UPDATE AS

2 IF EXISTS(SELECT *

3 FROM Incumbents I1

4 WHERE 1 < (SELECT COUNT(I2.SSN) -- How many entries

5 FROM Incumbents I2

6 WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN -- The same employee

7 AND I1.FromDate < I2.ToDate -- I1 starts before I2 ends

8 AND I1.ToDate > I2.FromDate)) -- I1 ends after I2 starts: the two conditions are

searching for intersections

9 BEGIN

10 RAISERROR('Violation of sequenced primary key constraint ' ,1,2)

11 ROLLBACK TRANSACTION

12 END

� To prevent sequenced duplicates, asumming only modi�cations to current data, we can use UNIQUE(SSN,
PCN, ToDate).

Now, we want to enforce that each employee has at most one position. In a snapshot table, this would be
equivalent to UNIQUE(SSN), and now the sequenced constraint is: at any time each employee has at most one
position, i.e., SSN is sequenced unique:

1 CREATE TRIGGER Seq_Unique ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT I1.SSN

3 FROM Incumbents I1

4 WHERE 1 < (SELECT COUNT(I2.SSN)

5 FROM Incumbents I2

6 WHERE I1.SSN = I2.SSN

7 AND I1.FromDate < I2.ToDate

8 AND I1.ToDate > I2.FromDate))

9 OR EXISTS (SELECT * FROM Incumbents AS I WHERE I.SSN IS NULL)

10 BEGIN

11 RAISERROR('Transaction violates sequenced unique constraint ' ,1,2)

12 ROLLBACK TRANSACTION

13 END

We can also think about the nonsequenced constraint: an employee cannot have more than one position
over two identical periods, i.e. SSN is nonsequenced unique: UNIQUE(SSN,FromDate,ToDate).

Or current constraint: an employee has at most one position now, i.e. SSN is current unique:

1 CREATE TRIGGER Current_Unique ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT I1.SSN

3 FROM Incumbents I1

4 WHERE 1 < (SELECT COUNT(I2.SSN)

5 FROM Incumbents I2

6 WHERE I1.SSN = I2.SSN

7 AND I1.FromDate <= CURRENT_DATE AND CURRENT_DATE < I1.ToDate -- I1 is current

8 AND I2.FromDate <= CURRENT_DATE AND CURRENT_DATE < I2.ToDate)) -- I2 is current

9 BEGIN

10 RAISERROR('Transaction allows current duplicates ' ,1,2)

11 ROLLBACK TRANSACTION

12 END

9.5 Referential integrity

We want to enforce that Incumbents.PCN is a foreign key for Position.PCN. There several possible cases,
depending on what tables are temporal.

53

9.5 Referential integrity 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

9.5.1 Case 1: neither table is temporal

1 CREATE TABLE Incumbents(

2 ...

3 PCN CHAR (6) NOT NULL REFERENCES Position ,

4 ...

5)

9.5.2 Case 2: both tables are temporal

In this case, if we want the PCN to be a current foreign key, the PCN of all current incumbents must be
listed in the current positions:

1 CREATE TRIGGER Current_RI ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT *

3 FROM Incumbents I

4 WHERE I.ToDate = '3000 -01 -01'

5 AND NOT EXISTS(SELECT *

6 FROM Position P

7 WHERE I.PCN = P.PCN -- The position is correct

8 AND P.ToDate='3000 -01 -01')) -- And is active

9 BEGIN

10 RAISERROR('Violation of current referential integrity ' ,1,2)

11 ROLLBACK TRANSACTION

12 END

Or it can be a sequenced foreign key:

1 CREATE TRIGGER Seq_RI ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT *

3 FROM Incumbents I

4 WHERE NOT EXISTS(SELECT *

5 FROM Position P

6 WHERE I.PCN = P.PCN

7 AND P.FromDate <= I.FromDate

8 AND P.ToDate > I.FromDate) -- These two search for P s.t. I starts in the middle

of P

9 OR NOT EXISTS(SELECT *

10 FROM Position P

11 WHERE I.PCN = P.PCN

12 AND P.FromDate < I.ToDate

13 AND P.ToDate >= I.ToDate) -- These two search for P s.t. I ends in the middle of P

14 OR EXISTS(SELECT *

15 FROM Position P

16 WHERE I.PCN = P.PCN

17 AND I.FromDate < P.ToDate AND I.ToDate > P.ToDate -- P ends in the middle of I

18 AND NOT EXISTS(SELECT *

19 FROM Position P2

20 WHERE P2.PCN = P.PCN

21 AND P2.FromDate <= P.ToDate

22 AND P2.ToDate > P.ToDate))) -- These two search for P2 that continues the RI

instead of P

23 BEGIN

24 RAISERROR('Violation of sequential referential integrity ' ,1,2)

25 ROLLBACK TRANSACTION

26 END

Contiguous history

A contiguous history is such that there are no gaps in the history. Enforcing contiguous history is a nonsequenced
constraint, because it requires examining the table at multiple points of time.

1 CREATE TRIGGER Cont_History ON Position FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT *

3 FROM Position P1, Position P2

4 WHERE P1.PCN = P2.PCN

5 AND P1.ToDate < P2.FromDate -- If P1 and P2 are separated

54

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

6 AND NOT EXISTS(SELECT *

7 FROM Position P3

8 WHERE P3.PCN = P1.PCN

9 AND (

10 (P3.FromDate <= P1.ToDate AND P3.ToDate > P1.ToDate) -- P3 extends P1 to the right

11 OR

12 (P3.FromDate < P2.FromDate AND P3.ToDate >= P2.FromDate)))) -- P3 extends P2 to

the left

13 BEGIN

14 RAISERROR('Transaction violates contiguous history ' ,1,2)

15 ROLLBACK TRANSACTION

16 END

We can also have the situation that Incumbents.PCN is a FK for Position.PCN and Position.PCN de�nes a
contiguous history. In this case, we can omit the part of searching for the P2 that extends a P that ends in the
middle of I.

1 CREATE TRIGGER Seq_RI_CH ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT *

3 FROM Incumbents I

4 WHERE NOT EXISTS(SELECT *

5 FROM Position P

6 WHERE I.PCN = P.PCN

7 AND P.FromDate <= I.ToDate AND I.FromDate < P.ToDate)

8 OR NOT EXISTS(SELECT *

9 FROM Position P

10 WHERE I.PCN = P.PCN

11 AND P.FromDate < I.ToDate AND I.ToDate <= P.ToDate))

12 BEGIN

13 RAISERROR('Violation of sequenced referential integrity ' ,1,2)

14 ROLLBACK TRANSACTION

15 END

9.5.3 Case 3: Only the referenced table is temporal

Current FK:

1 CREATE TRIGGER Current_RI ON Incumbents FOR INSERT , UPDATE , DELETE AS

2 IF EXISTS(SELECT *

3 FROM Incumbents I

4 WHERE NOT EXISTS(SELECT *

5 FROM Position P

6 WHERE I.PCN = P.PCN AND P.ToDate = '3000 -01 -01')) -- P is current

7 BEGIN

8 RAISERROR('Violation of current referential integrity ' ,1,2)

9 ROLLBACK TRANSACTION

10 END

9.6 Querying valid-time tables

We have the relations:

Employee

SSN FirstName LastName BirthDate

Incumbents

SSN PCN FromDate ToDate

Salary

SSN Amount FromDate ToDate

Position

PCN JobTitle

Say we want to obtain Bob's current position. Then:

1 -- Option 1

2 SELECT JobTitle

3 FROM Employee E, Incumbents I, Position P

4 WHERE F.FirstName = 'Bob'

5 AND E.SSN = I.SSN

6 AND I.PCN = P.PCN

55

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

7 AND I.ToDate = '3000 -01 -01'

8

9 -- Option 2

10 SELECT JobTitle

11 FROM Employee E, Incumbents I, Position P

12 WHERE F.FirstName = 'Bob'

13 AND E.SSN = I.SSN

14 AND I.PCN = P.PCN

15 AND I.FromDate <= CURRENT_DATE AND I.ToDate > CURRENT_DATE -- This one is more portable

And Bob's current position and salary? Current joins:

1 SELECT JobTitle , Amount

2 FROM Employee E, Incumbents I, Position P, Salary S

3 WHERE FirstName = 'Bob'

4 AND E.SSN = I.SSN AND I.PCN = P.PCN AND E.SSN = S.SSN

5 AND I.FromDate <= CURRENT_DATE AND I.ToDate > CURRENT_DATE -- I is current

6 AND S.FromDate <= CURRENT_DATE AND S.ToDate > CURRENT_DATE -- S is current

And if we want to get what employees have currently no position?

1 SELECT FirstName

2 FROM Employee e

3 WHERE NOT EXISTS(SELECT *

4 FROM Incumbents I

5 WHERE E.SSN = I.SSN

6 AND I.FromDate <= CURRENT_DATE AND I.ToDate > CURRENT_DATE)

9.6.1 Extracting prior states

A timeslice query extracts a state at a particular point in time. They require an additional predicate for each
temporal tables: they are basically the same as checking the current state, but with a di�erent date.

For example: Bob's position at the beginning of 1997?

1 SELECT JobTitle

2 FROM Employee E, Incumbents I, Position P

3 WHERE F.FirstName = 'Bob'

4 AND E.SSN = I.SSN

5 AND I.PCN = P.PCN

6 AND I.FromDate <= '1997 -01 -01' AND I.ToDate > '1997 -01 -01'

9.6.2 Sequenced queries

A sequenced query is such that its result is a valid-time table. They use sequenced variants of basic operations:

� Sequenced selection: no change:

1 SELECT *

2 FROM Salary

3 WHERE Amount > 5000

� Sequenced projection: include the timestamp columns in the select list, because if not we would obtain
several values for the same employees:

1 SELECT SSN , FromDate , ToDate

2 FROM Salary

If we want to remove the duplicates here, we need to coalesce the results.

1 SELECT DISTINCT F.SSN , F.FromDate , L.ToDate

2 FROM Salary F, Salary L

3 WHERE F.FromDate < L.ToDate -- F is to the left of L

4 AND F.SSN = L.SSN -- And they are of the same SSN

5 AND NOT EXISTS(SELECT * -- This is the: forall M inside the period , it can be extended

to the left

6 FROM Salary M

56

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

7 WHERE M.SSN = F.SSN -- M belongs to the same SSN

8 AND F.FromDate < M.FromDate and M.FromDate <= L.ToDate -- M starts between F

and L

9 AND NOT EXISTS(SELECT *

10 FROM Salary T1

11 WHERE T1.SSN = F.SSN

12 AND T1.FromDate < M.FromDate AND M.FromDate <= T1.ToDate))

13 AND NOT EXISTS(SELECT * -- This is the: the period is maximal

14 FROM Salary T2

15 WHERE T2.SSN = F.SSN

16 AND (

17 (T2.FromDate < F.FromDate AND F.FromDate <= T2.ToDate)

18 OR

19 (T2.FromDate <= L.ToDate AND L.ToDate < T2.ToDate))

� Sequenced sort: in this case we require the result to be ordered at each point in time. This can be
accomplished by appending the start and end time columns in the ORDEER BY:

1 SELECT *

2 FROM Incumbents

3 ORDER BY PCN , FromDate , ToDate

It can also be done by omitting the timestamp columns.

� Sequenced union: a UNION ALL (retaining duplicates) over temporal tables is automatically sequenced
if the timestamp columns are kept:

1 SELECT *

2 FROM Salary

3 WHERE Amount > 50000

4

5 UNION ALL

6

7 SELECT *

8 FROM Salary

9 WHERE Amount < 10000

� Sequenced join: imagine we want to determine the salary and position history for each employee. This
implies a sequenced join between Salary and Incumbents. It is supposed that there are no duplicate rows
in the tables: at each point in time an employee has one salary and one position. In SQL, a sequenced
join requires four select statements and complex inequality predicates and the following code does not
generate duplicates. This is why UNION ALL is used without problems, and being more e�cient than
UNION, which does a lot of work for removing non-ocurring duplicates5.

1 -- Usual sequenced join

2 SELECT S.SSN , Amount , PCN , S.FromDate , S.ToDate

3 FROM Salary S, Incumbents I

4 WHERE S.SSN = I.SSN

5 AND I.FromDate < S.FromDate AND S.ToDate <= I.ToDate

6

7 UNION ALL

8

9 SELECT S.SSN , Amount , PCN , S.FromDate , I.ToDate

10 FROM Salary S, Incumbents I

11 WHERE S.SSN = I.SSN

12 AND I.FromDate <= S.FromDate

13 AND S.FromDate < I.ToDate AND S.ToDate > I.ToDate

14

15 UNION ALL

16

17 SELECT S.SSN , Amount , PCN , I.FromDate , S.ToDate

18 FROM Salary S, Incumbents I

19 WHERE S.SSN = I.SSN

20 AND S.FromDate <= I.FromDate

21 AND I.FromDate < S.ToDate AND I.ToDate > S.ToDate

5We already saw how the temporal join is done before.

57

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

22

23 UNION ALL

24

25 SELECT S.SSN , Amount , PCN , I.FromDate , I.ToDate

26 FROM Salary S, Incumbents I

27 WHERE S.SSN = I.SSN

28 AND S.FromDate < I.FromDate AND I.ToDate <= S.ToDate

This can also be done using CASE, which allows to write the query in a single statement: the �rst case
simulates a maxDate function of the two arguments, the second one a minDate function. The condition
in the WHERE ensures that the period of validity is well formed:

1 -- Sequenced join with CASE

2 SELECT S.SSN , Amount , PCN ,

3 CASE WHEN S.FromDate > I.FromDate THEN S.FromDate ELSE I.FromDate

4 END AS FromDate ,

5 CASE WHEN S.ToDate > I.ToDate THEN I.ToDate ELSE S.ToDate

6 END AS ToDate

7 FROM Salary S, Incumbents I

8 WHERE S.SSN = I.SSN

9 AND (CASE WHEN S.FromDate > I.FromDate THEN S.FromDate ELSE I.FromDate END)

10 <

11 (CASE WHEN S.ToDate > I.ToDate THEN I.ToDate ELSE S.ToDate END)

Another way to do the sequenced join is using functions:

1 -- Sequenced join with functions

2 CREATE FUNCTION minDate(@one SMALLDATETIME , @two SMALLDATETIME)

3 RETURNS SMALLDATETIME AS

4 BEGIN

5 RETURN CASE WHEN @one < @two THEN @one ELSE @two END

6 END

7

8 CREATE FUNCTION maxDate(@one SMALLDATETIME , @two SMALLDATETIME)

9 RETURNS SMALLDATETIME AS

10 BEGIN

11 RETURN CASE WHEN @one < @two THEN @two ELSE @one END

12 END

13

14 SELECT S.SSN , Amount , PCN , maxDate(S.FromDate , I.FromDate) AS FromDate , minDate(S.ToDate ,

I.ToDate) AS ToDate

15 FROM Salary S, Incumbents I

16 WHERE S.SSN = I.SSN

17 AND maxDate(S.FromDate ,I.FromDate) < minDate(S.ToDate ,I.ToDate)

� Temporal di�erence: the usual di�erence is implemented in SQL with EXCEPT, NOT EXISTS or
NOT IN. For example, if we want to list the employees who are department heads (PCN=1234) but are
not also professors (PCN=5555), we can do it as:

1 -- Nontemporal veersion

2 -- using NOT EXISTS

3 SELECT SSN

4 FROM Incumbents I1

5 WHERE I1.PCN = 1234

6 AND NOT EXISTS(SELECT *

7 FROM Incumbents I2

8 WHERE I1.SSN = I2.SSN AND I2.PCN = 5555)

9

10 --using EXCEPT

11 SELECT SSN

12 FROM Incumbents

13 WHERE PCN = 1234

14

15 EXCEPT

16

17 SELECT SSN

18 FROM Incumbents

19 WHERE PCN = 5555

58

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

But the sequenced di�erence is a bit more complex. There are four possible cases, depicted in Figure 6.

Figure 6: Cases for temporal di�erence.

The SQL query is:

1 SELECT A.SSN , A.FromDate , B.FromDate AS ToDate

2 FROM Incumbents A, Incumbents B

3 WHERE A.PCN = 1234 AND B.PCN = 5555 AND A.SSN = B.SSN

4 AND A.FromDate < B.FromDate AND B.FromDate < A.ToDate -- Case 1

5 AND NOT EXISTS(SELECT *

6 FROM Incumbents C

7 WHERE A.SSN = C.SSN AND C.SSN = 5555

8 AND A.FromDate < C.ToDate AND C.FromDate < B.FromDate) -- Check that we are

not in case 3

9

10 UNION

11

12 SELECT A.SSN , B.ToDate AS FromDate , A.ToDate

13 FROM Incumbents A, Incumbents B

14 WHERE A.PCN = 1234 AND B.PCN = 5555 AND A.SSN = B.SSN

15 AND A.FromDate < B.ToDate AND B.ToDate < A.ToDate -- Case 2

16 AND NOT EXISTS(SELECT *

17 FROM Incumbents C

18 WHERE A.SSN = C.SSN AND C.PCN = 5555

19 AND B.ToDate < C.ToDate AND C.FromDate < A.ToDate) -- Check we are not in

case 3

20

21 UNION

22

23 SELECT A.SSN , B1.ToDate AS FromDate , B2.FromDate AS ToDate

24 FROM Incumbents A, Incumbents B1 , Incumbents B2

25 WHERE A.PCN = 1234 AND B1.PCN = 5555 AND B2.PCN = 5555

26 AND A.SSN = B1.SSN AND A.SSN = B2.SSN

27 AND B1.ToDate < B2.FromDate

28 AND A.FromDate < B1.ToDate

29 AND B2.FromDate < A.ToDate -- Case 3

30 AND NOT EXISTS(SELECT *

31 FROM Incumbents C

32 WHERE A.SSN = C.SSN AND C.SSN = 5555

33 AND B1.ToDate < C.ToDate AND C.FromDate < B2.FromDate) -- Check B1 and B2 are

not temporary contected

34

35 UNION

36

37 SELECT SSN , FromDate , ToDate

38 FROM Incumbents A

39 WHERE A.PCN = 1234

40 AND NOT EXISTS(SELECT *

41 FROM Incumbents C

42 WHERE A.SSN = C.SSN AND C.PCN = 5555

43 AND A.FromDate < C.ToDate AND C.FromDate < A.ToDate) -- Case 4

59

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

9.6.3 Nonsequenced queries

Nonsequenced operators are straightforward: they ignore the time-varying nature of the tables.

Example 9.2. List all the salaries, past and present, of employees who had been lecturer at some time:

1 SELECT Amount

2 FROM Incumbents I, Position P, Salary S

3 WHERE I.SSN = S.SSN AND I.PCN = P.PCN

4 AND JobTitle = 'Lecturer ';

When did employees receive raises?

1 SELECT S2.SSN , S2.FromDate AS RaiseDate

2 FROM Salary S1, Salary S2

3 WHERE S2.Amount > S1.Amount AND S1.SSN = S2.SSN AND S1.ToDate = S2.FromDate;

Remove nonsequenced duplicates from Incumbents:

1 SELECT DISTINCT *

2 FROM Incumbents

Remove value-equivalent rows from Incumbents:

1 SELECT DISTINCT SSN , PCN

2 FROM Incumbents

Remove current duplicates from Incumbents:

1 SELECT DISTINCT SSN , PCN

2 FROM Incumbents

3 WHERE ToDate = '3000 -01 -01'

9.6.4 Sequenced aggregation function

Say we have two relations:
A�liation

SSN DNumber FromDate ToDate

Salary

SSN Amount FromDate ToDate
And we want the maximum salary. The non-temporal version is straighforward:

1 SELECT MAX(Amount)

2 FROM Salary

And the maximum salary by department:

1 SELECT DNumber , MAX(Amount)

2 FROM Affiliation A, Salary S

3 WHERE A.SSN = S.SSN

4 GROUP BY DNumber

But the temporal version is not that easy. We have to do as in this visual example:

The steps to follow are:

1. Compute the periods on which a maximum must be calculated.

2. Compute the maximum for the periods.

3. Coalesce the results (as we have already seen)

60

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

1 -- Step 1: compute periods

2 CREATE VIEW SalChanges(Day) AS

3 SELECT DISTINCT FromDate

4 FROM Salary

5

6 UNION

7

8 SELECT DISTINCT ToDate

9 FROM Salary

10

11 CREATE VIEW SalPeriods(FromDate , ToDate) AS

12 SELECT P1.Day , P2.Day

13 FROM SalChanges P1 , SalChanges P2

14 WHERE P1.Day < P2.Day -- Get all consecutive combinations

15 AND NOT EXISTS(SELECT *

16 FROM Salchanges P3

17 WHERE P1.Day < P3.Day AND P3.Day < P2.Day) -- Ensure they are consecutive

18

19 -- Step 2

20 CREATE VIEW TempMax(MaxSalary , FromDate , ToDate) AS

21 SELECT MAX(S.AMOUNT), P.FromDate , P.ToDate

22 FROM SALARY S, SalPeriods P

23 WHERE S.FromDate <= P.FromDate AND P.ToDate <= S.ToDate

24 GROUP BY P.FromDate , I.ToDate

25

26 -- Step 3: COALESCE

Now, we want to compute the history of maximum salary by deparment:

1. Compute by department the periods on which a maximum must be calculated.

2. Compute the maximum salary for these periods.

3. Coalesce the results.

1 -- Step 1

2 CREATE VIEW Aff_Sal(DNumber , Amount , FromDate , ToDate) AS

3 SELECT DISTINCT A.DNumber , S.Amount , maxDate(S.FromDate , A.FromDate) AS FromDate , minDate(S.

ToDate , A.ToDate) AS ToDate

4 FROM Affiliation A, Salary S

5 WHERE A.SSN = S:SSN

6 AND maxDate(S.FromDate ,A.FromDate) < minDate(S.ToDate ,A.ToDate)

7

8 CREATE VIEW SalChanges(DNumber , Day) AS

9 SELECT DISTINCT DNumber , FromDate

10 FROM Aff_Sal

11 UNION

12 SELECT DISTINCT DNumber , ToDate

13 FROM Aff_Sal

14

15 CREATE VIEW SalPeriods(DNumber , FromDate , ToDate) AS

16 SELECT P1.DNumber , P1.Day , P2.Day

17 FROM SalChanges P1 , SalChanges P2

18 WHERE P1.DNumber = P2.DNumber AND P1.Day < P2.Day

19 AND NOT EXISTS(SELECT *

20 FROM SalChanges P3

21 WHERE P3.DNumber = P1.DNumber

22 AND P1.Day < P3.Day AND P3.Day < P2.Day)

23

24 -- Step 2

25 CREATE VIEW TempMaxDep(DNumber , MaxSalary , FromDate , ToDate) AS

26 SELECT P.DNumber , MAX(Amount), P.FromDate , P.ToDate

27 FROM Aff_Sal A, SalPeriods P

28 WHERE A.DNumber = P.DNumber

29 AND A.FromDate <= P.FromDate AND P.ToDate <= A.ToDate

30 GROUP BY P.DNumber , P.FromDate , P.ToDate

31

32 -- Step 3: COALESCE

61

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

9.6.5 Sequenced division

Now we have the tables:
A�liation

SSN DNumber FromDate ToDate

Controls

PNumber DNumber FromDate ToDate

WorksOn

SSN PNumber FromDate ToDate
And say we want to get the employees that are working all projects of the department to which they are

a�liated.

� Nontemporal version:

1 SELECT SSN

2 FROM Affiliation A

3 WHERE NOT EXISTS(SELECT * -- There are no projects associated to the dept in which the

employee does not work

4 FROM Controls C

5 WHERE A.DNumber = C.DNumber -- Get all projects controlled by the dept

6 AND NOT EXISTS(SELECT *

7 FROM WorksOn W

8 WHERE C.PNumber = W AND A.SSN = W.SSN)) -- Check if the employee works

on it

� Sequenced division: Case1. Only WorksOn is temporal.

1. Construct the periods on which the division must be computed.

2. Compute the division.

3. Coalesce.

1 -- Step 1

2 CREATE VIEW ProjChangesC1(SSN ,Day) AS

3 SELECT SSN.FromDate FROM WorksOn

4 UNION

5 SELECT SSn.ToDate FROM WorksOn

6

7 CREATE VIEW ProjPeriodsC1(SSN ,FromDate ,ToDate) AS

8 SELECT P1.SSN , P1.Day , P2.Day

9 FROM ProjChangesC1 P1, ProjChangesC1 P2

10 WHERE P1.SSN = P2.SSN AND P1.Day < P2.Day

11 AND NOT EXISTS(SELECT *

12 FROM ProjChangesC1 P3

13 WHERE P3.SSN = P1.SSN

14 AND P3.Day > P1.Day AND P3.Day < P2.Day)

15

16 -- Step 2

17 CREATE VIEW TempUnivQuantC1(SSN , FromDate , ToDate) AS

18 SELECT DISTINCT P.SSN , P.FromDate , P.ToDate

19 FROM ProjPeriodsC1 P, Affiliation A

20 WHERE P.SSN = A.SSN

21 AND NOT EXISTS(SELECT *

22 FROM CONTROLS C

23 WHERE A.DNumber = C.DNumber

24 AND NOT EXISTS(SELECT *

25 FROM WorksOn W

26 WHERE C.PNumber = W.PNumber AND P.SSN = W.SSN

27 AND W.FromDate <= P.FromDate AND W.ToDate >= P.ToDate))

28

29 -- Step 3: COALESCE

62

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

� Sequenced division: Case 2. Only Controls and WorksOn are temporal. In this case, employees may work
on projects controlled by departments di�erent from the department to which they are a�liated.

1. Construct the periods on which the division must be computed.

2. Compute the division of these periods.

3. Coalesce.

1 -- Step 1

2 CREATE VIEW ProjChangesC2(SSN ,Day) AS

3 SELECT SSN , FromDate

4 FROM Affiliation A, Controls C

5 WHERE A.DNumber = C.DNumber

6 UNION

7 SELECT SSN , ToDate

8 FROM Affiliationn A, Controls C

9 WHERE A.DNumber = C.DNumber

10 UNION

11 SELECT SSN , FromDate

12 FROM WorksOn

13 UNION

14 SELECT SSN , ToDate

15 FROM WorksOn

16

17 CREATE VIEW ProjPeriodsC2(SSN ,FromDate ,ToDate) AS

18 SELECT P1.SSN , P1.Day , P2.Day

19 FROM ProjChanges P1, ProjChanges P2

20 WHERE P1.SSN = P2.SSN AND P1.Day < P2.Day

21 AND NOT EXISTS(SELECT *

22 FROM ProjChanges P3

23 WHERE P3.SSN = P1.SSN AND P1.Day < P3.Day AND P3.Day < P2.Day)

24

25 -- Step 2

26 CREATE VIEW TempUnivC2(SSN , FromDate , ToDate) AS

27 SELECT DISTINCT P.SSN , P.FromDate , P.ToDate

28 FROM ProjPeriodsC2 P, Affiliation A

29 WHERE P.SSN = A.SSN

30 AND NOT EXISTS(SELECT *

31 FROM Controls C

32 WHERE A.DNumber = C.DNumber

33 AND C.FromDate <= P.FromDate AND P.ToDate <= C.ToDate

34 AND NOT EXISTS(SELECT *

35 FROM WorksOn W

36 WHERE C.PNumber = W.PNumber AND P.SSN = W.SSN

37 AND W.FromDate <= P.FromDate AND P.ToDate <= W.ToDate))

38

39 -- Step 3: COALESCE

� Sequenced division: Case 3. Only A�liation and WorksOn are temporal. Again, employees may work in
projects controlled by departments di�erent from the department to which they are a�liated.

63

9.6 Querying valid-time tables 9 MANIPULATING TEMPORAL DATABASES WITH SQL-92

The steps are conceptually the same, so let's go with SQL:

1 -- Step 1

2 CREATE VIEW Aff_WO(SSN , DNumber , PNumber , FromDate , ToDate) AS

3 SELECT DISTINCT A.SSN , A.DNumber , W.PNumber , maxDate(A.FromDate ,W.FromDate) AS FromDate

, minDate(A.ToDate ,W.ToDate) AS ToDate

4 FROM Affiliation A, WorksOn W

5 WHERE A.SSN = W.SSN AND maxDate(A.FromDate ,W.FromDate) < minDate(A.ToDate ,W.toDate)

6

7 CREATE VIEW ProjChangesC3(SSN , DNumber , Day) AS

8 SELECT SSN , DNumber , FromDate FROM Aff_WO

9 UNION

10 SELECT SSN , DNumber , ToDate FROM Aff_WO

11 UNION

12 SELECT SSN , DNumber , FromDate FROM Affiliation

13 UNION

14 SELECT SSN , DNumber , ToDate FROM Affiliation

15

16 CREATE VIEW ProjPeriodsC3(SSN , DNumber , FromDate , ToDate) AS

17 SELECT P1.SSN , P1.DNumber , P1.Day , P2.Day

18 FROM ProjChangesC3 P1, ProjChangesC3 P2

19 WHERE P1.SSN = P2.SSN AND P1.DNumber = P2.DNumber

20 AND P1.Day < P2.Day

21 AND NOT EXISTS(SELECT *

22 FROM ProjChangesC3 P3

23 WHERE P3.SSN = P1.SSN AND P3.DNumber = P1.DNumber

24 AND P1.Day < P3.Day AND P3.Day < P2.Day)

25

26 -- Step 2

27 CREATE VIEW TempUnivQuantC3(SSN , FromDate , ToDate) AS

28 SELECT DISTINCT P.SSN , P.FromDate , P.ToDate

29 FROM ProjPeriodsC3 P

30 WHERE NOT EXISTS(SELECT *

31 FROM Controls C

32 WHERE P.DNumber = C.DNumber

33 AND NOT EXISTS(SELECT *

34 FROM WorksOn W

35 WHERE C.PNumber = W.PNumber AND P.SSN = W.SSN

36 AND W.FromDate <= P.FromDate AND P.ToDate <= W.ToDate))

37

38 -- Step 3: COALESCE

� Sequenced division, Case 4. The three tables are temporal.

64

10 TEMPORAL SUPPORT IN CURRENT DBMSS AND SQL 2011

1 -- Step 1

2 CREATE VIEW Aff_Cont(SSN , DNumber , PNumber , FromDate , ToDate) AS

3 SELECT DISTINCT A.SSN , A.DNumber , C.PNumber ,maxDate(A.FromDate ,C.FromDate) AS FromDate ,

minDate(A.ToDate ,C.ToDate) AS ToDate

4 FROM Affiliation A, Controls C

5 WHERE A.DNumber=C.DNumber

6 AND maxDate(A.FromDate ,C.FromDate) < minDate(A.ToDate ,C.ToDate)

7

8 CREATE VIEW Aff_Cont_WO(SSN , DNumber , PNumber , FromDate , ToDate) AS

9 SELECT DISTINCT A.SSN , A.DNumber , W.PNumber , maxDate(A.FromDate ,W.FromDate) AS FromDate

, minDate(A.ToDate ,W.ToDate) AS ToDate

10 FROM Aff_Cont A, WorksOn W

11 WHERE A.PNumber=W.PNumber AND A.SSN=W.SSN

12 AND maxDate(A.FromDate ,W.FromDate) < minDate(A.ToDate ,W.ToDate)

13

14 CREATE VIEW ProjChangesC4(SSN , DNumber , Day) AS

15 SELECT SSN , DNumber , FromDate FROM Aff_Cont

16 UNION

17 SELECT SSN , DNumber , ToDate FROM Aff_Cont

18 UNION

19 SELECT SSN , DNumber , FromDate FROM Aff_Cont_WO

20 UNION

21 SELECT SSN , DNumber , ToDate FROM Aff_Cont_WO

22 UNION

23 SELECT SSN , DNumber , FromDate FROM Affiliation

24 UNION

25 SELECT SSN , DNumber , ToDate FROM Affiliation

26

27 CREATE VIEW ProjPeriodsC4(SSN , DNumber , FromDate , ToDate) AS

28 SELECT P1.SSN , P1.DNumber , P1.Day , P2.Day

29 FROM ProjChangesC4 P1, ProjChangesC4 P2

30 WHERE P1.SSN = P2.SSN AND P1.DNumber = P2.DNumber AND P1.Day < P2.Day

31 AND NOT EXISTS(SELECT *

32 FROM ProjChangesC4 P3

33 WHERE P1.SSN = P3.SSN AND P1.DNumber = P3.DNumber

34 AND P1.Day < P3.Day AND P3.Day < P2.Day)

35

36 -- Step 2

37 CREATE VIEW TempUnivQuantC4(SSN , FromDate , ToDate) AS

38 SELECT DISTINCT P.SSN , P.FromDate , P.ToDate

39 FROM ProjPeriodsC4 P

40 WHERE NOT EXISTS(SELECT *

41 FROM Controls C

42 WHERE P.DNumber = C.DNumber

43 AND C.FromDate <= P.FromDate AND P.ToDate <= C.ToDate

44 AND NOT EXISTS(SELECT *

45 FROM WorksOn W

46 WHERE C.PNumber = W.PNumber AND P.SSN=W.SSN

47 AND W.FromDate <= P.FromDate AND P.ToDate <= W.ToDate))

10 Temporal Support in current DBMSs and SQL 2011

10.1 Oracle

� Oracle 9i included support for transaction time. Flashback queries allow the application to access prior
transaction-time states of their database: they are transaction timeslice queries. Database modi�cations
and conventional queries are temporally upward compatible.

� Oracle 10g extended �ashback queries to retrieve all the versions of a row between two transaction times.
It also allowed tables and databases to be rolled back to a previous transaction time, discarding changes
after that time.

� Oracle 10g Workspace Manager includes the period data type, valid-time support, transaction-time sup-
port, bitemporal support and support for sequenced primary keys, sequenced uniqueness, sequenced ref-
erential integrity and sequenced selection and projection.

65

10.2 Teradata 10 TEMPORAL SUPPORT IN CURRENT DBMSS AND SQL 2011

� Oracle 11g does not rely on transient storage like the undo segments, it records changes in the Flashback
Recovery Area. Valid-time queries were also enhanced.

10.2 Teradata

� Teradata Database 13.10 introduced the period data type, valid-time support, transaction-time support,
timeslices, temporal upward compatibility, sequenced primary key and temporal referential integrity con-
straints, nonsequenced queries, and sequenced projection and selection.

� Teradata Database 14 adds capabilities to create a global picture of an organization's business at any
point in time.

10.3 DB2

IBM DB2 10 includes the period data type, valid-time support (termed business time), transaction-time sup-
port (termed system time), timeslices, temporal upward compatibility, sequenced primary keys, and sequenced
projection and selection.

10.4 SQL 2011

SQL2011 has temporal support:

� Application-time period tables: valid-time tables. They have sequenced primary and foreign keys,
support single-table valid-time sequenced insertions, deletions and updates, and nonsequenced valid-time
queries.

They contain a PERIOD clause with an user-de�ned period name. Currently restricted to temporal
periods only. They must contain two additional columns, to store the start time and the end time of
a period associated with the row, whose values are set by the user. The user can also specify primary
key/unique constraints to ensure that no two rows with the same key value have overlapping periods, as
well as referential integrity constraints to ensure that the period of every child row is completely contained
in the period of exactly one parent row or in the combined period of two or more consecutive parent rows.

Queries, inserts, updates and deletes behave exactly like in regular tables. Additional syntax is provided
on UPDATE and DELETE statements for partial period updates and deletes.

We can create an application-time period table as

1 CREATE TABLE employees(

2 emp_name VARCHAR (50) NOT NULL PRIMARY KEY ,

3 dept_id VARCHAR (10),

4 start_date DATE NOT NULL ,

5 end_date DATE NOT NULL ,

6 PERIOD FOR emp_period (start_date , end_date),

7 PRIMARY KEY(emp_name , emp_period WITHOUT OVERLAPS),

8 FOREIGN KEY(dept_id , PERIOD emp_period) REFERENCES departments(Dept_id , PERIOD

dept_period));

The PERIOD clause automatically enforces the constraint end_date > start_date. The name of the
period can be any user-de�ned name. The period is closed-open, [).

To insert a row into an application-time period table, the user needs to provide the start and end time
of the period for each row. The time values can be either in the past, current or future.

1 INSERT INTO employees (emp_name , dept_id , start_date , end_date)

2 VALUES ('John', 'J13', DATE '1995 -11 -15', DATE '1996 -11 -15'),

3 ('Tracy', 'K25', DATE '1996 -01 -01', DATE '1997 -11 -15')

All rows canbe potentially updated. Users are allowed to update the start and end columns of the period
associated with each row and when a row is updated using the regular UPDATE statement, the regular
semantics apply. Additional syntax is provided for UPDATE statements to specify the time period during
which the update applies, and only rows that lie within the speci�ed period are impacted in that case.

66

10.4 SQL 2011 10 TEMPORAL SUPPORT IN CURRENT DBMSS AND SQL 2011

This can lead to row splits, if the modi�cation lies in the middle of the period of the row. Users are not
allowed to update the start and end columns of the period associated with each row under this option.

Also, all rows can be potentially deleted. Again, normal semantics apply unless we use the syntax
provided to specify the time period during which the delete applies, so only rows lying inside the indicated
period are impacted. This can also lead to row splits.

To query a table, normal syntax applies. If we want to retrieve the current department of John:

1 SELECT dept_id

2 FROM employees

3 WHERE emp_name = 'John'

4 AND start_date <= CURRENT_DATE AND end_date > CURRENT_DATE

Or if we want the number of di�erent departments in which John worked since Jan 1 96:

1 SELECT COUNT(DISTINCT dept_id)

2 FROM employees

3 WHERE emp_name = 'John'

4 AND start_date <=DATE '1996 -01 -01' AND end_date > DATE '1996 -01 -01'

Bene�ts of application-time period tables:

� Most business data is time sensitive.

� DB systems today o�er no support for associating user-maintained time periods with rows nor en-
forcing constraints such as 'an employee can be in only one department in any given period '.

� Updating/deleting a row for a part of its validity period.

� Currently, applications take the responsibility for managing such requirements.

� The major issues are the complexity of the code and its poor performance.

� These table provide:

* Signi�cant simpli�cation of application code

* Signi�cant improvement in performance

* Transparent to legacy applications

� System-versioned tables: transaction-time tables. They have transaction-time current primary and
foreign keys, support transaction-time current insertions, deletions and updates, and transaction-time
current and nonsequenced queries.

These tables contain a PERIOD clause with a pre-de�ned period name (SYSTEM_TIME) and specify
WITH SYSTEM VERSIONING. They must contain two additional columns, to store the start time and
the end time of the SYSTEM_TIME period, whose values are set by the system, not the user. Unlike
regular tables, system-versioned tables preserve the old versions of rows as the table is updated.

Rows whose periods intersect the current time are called current system rows, all others are called
historical system rows. Only current system rows can be updated or deleted and the constraints are
enforced only on current system rows.

To create a table:

1 CREATE TABLE employee(

2 emp_name VARCHAR (50) NOT NULL PRIMARY KEY ,

3 dept_id VARCHAR (10),

4 system_start TIMESTAMP (6) GENERATED ALWAYS AS ROW START ,

5 system_end TIMESTAMP (6) GENERATED ALWAYS AS ROW END ,

6 PERIOD FOR SYSTEM_TIME (system_start , system_end),

7 FOREIGN KEY (dept_id) REFERENCES departments(dept_id);

8) WITH SYSTEM VERSIONING;

The PERIOD clause automatically enforces the constraint system_end > system_start and the name of
the period must be SYSTEM_TIME. The period is closed, open [).

When a row is inserted into a system-versiones table, the SQL-implementation sets the start time to the
transaction time and the end time to the largest timestamp value. All rows inserted in a transaction will
get the same values for the start and end columns.

67

10.4 SQL 2011 10 TEMPORAL SUPPORT IN CURRENT DBMSS AND SQL 2011

When a row is updated the SQL-implementation insert the 'old' version of the row into the table before
updating the row, setting its end time and the start time of the updated row to the transaction time.
Users are not allowed to modify the start nor end time.

When a row is deleted, the SQL-implementation does not actually delete the row, but sets its end time
to the transaction time.

To query a system-versiones table, existing syntax for querying regular tables is applicable. Additional
syntax is provided for expressing queries involving system-versioned tables in a more succint manner:

1 FOR SYSTEM_TIME AS OF <datetime > -- Ask for data of the date datetime

2 FOR SYSTEM_TIME BETWEEN <datetime > AND <datetime > -- Ask for data between the two given

datetimes

3 FOR SYSTEM_TIME FROM <datetime > TO <datetime > -- Same

If none of this clause are speci�ed, the system queries only current system tables.

Bene�ts of system-versioned tables:

� Today's DB systems focus mainly on managing current data, providing almnost no support for
managing historical data, while some applications have an inherent need for preserving old data.
Also, regulatory and compliance laws require keeping old data around for a certain period of time.
Currently, applications take on this responsibility.

� The major issues are as before: complexity of the code and poor performance.

� System-versioned tables provide:

* Signi�cant simpli�cation of application code.

* Signi�cant improvement in performance.

* Transparent to legacy applications.

� System-versiones application-time period tables: bitemporal tables. They support temporal queries
and modi�cations of combinations of the valid-time and transaction-time variants. These tables support
features of both application-time period tables and system-versioned tables.

To create a table:

1 CREATE TABLE employees(

2 emp_name VARCHAR (50) NOT NULL PRIMARY KEY ,

3 dept_id VARCHAR (10),

4 start_date DATE NOT NULL ,

5 end_date DATE NOT NULL ,

6 system_start TIMESTAMP (6) GENERATED ALWAYS AS ROW START ,

7 System_end TIMESTAMP (6) GENERATED ALWAYS AS ROW END ,

8 PERIOD FOR emp_period (start_date , end_date),

9 PERIOD FOR SYSTEM_TIME (system_start , system_end),

10 PRIMARY KEY (emp_name , emp_period WITHOUT OVERLAPS),

11 FOREIGN KEY (dept_id , PERIOD emp_period) REFERENCES departments (dept_id , PERIOD

dept_period)

12) WITH SYSTEM VERSIONING;

Say we want to make the following update: On 15/12/97, John is loaned to department M12 starting
from 01/01/98 to 01/07/98:

1 UPDATE employees FOR PORTION OF emp_period

2 FROM DATE '1998 -01 -01' TO DATE '1998 -07 -01'

3 SET dept_id = 'M12' WHERE emp_name = 'John'

Or in 15/12/98, John is approved for a leave of absence from 1/1/99 to 1/1/2000:

1 DELETE FROM employees

2 FOR PORTION OF emp_period FROM DATE '1999 -01 -01' TO DATE '2000 -01 -01'

3 WHERE emp_name = 'John'

68

11 INTRODUCTION

Part IV

Spatial Databases

11 Introduction

A spatial database is a database that needs to store and query spatial objects, such as points (a house in a
city), lines (a road) or polygons (a country). Thus, a spatial DBMS is a DBMS that manages data existing
in some space:

� 2D or 2.5D: integrated circuits (VLSI design) or geographic space (GIS, urban planning).

� 2.5D: elevation.

� 3D: medicine (brain models), biological research (moledule structures), architecture (CAD) or ground
models (geology).

The supporting technology needs to be able to manage large collections of geometric objects, and major com-
mercial and open source DBMSs provide spatial support.

Spatial databases are important because queries to databases are posed in high level declarative manner,
usually with SQL, which is popular in the commercial DB world. Also, although the standard SQL operates on
relatively simple data types, additional spatial data types and operations can be de�ned in spatial databases.

A geographic information system (GIS) is a system designed to capture, store, manipulate, analyze,
manage and present geographically-referenced data, as well as non spatial data. It can be used to establish
connections between di�erent elements using geography operations, such as the location, the proximity or the
spatial distribution. There are plenty of commercial and open source systems of this kind, but with limited
temporal support.

A GIS can be seen as a set of subsystems:

� Data processing: data acquisition, input and store.

� Data analysis: retrieval and analysis.

� Information use: it is needed an interaction between GIS group and users to plan analytical procedures
and data structures. The users of GIS are researches, planners or managers.

� Management system: it has an organizational role, being a separate unit in a resource management. An
agency o�ering spatial DB and analysis services.

There are many �elds involved in the development of GIS: geography, cartography, remote sensing, photogram-
metry, geodesy, statistics, operations research, mathematics, civil engineering and computer science, with com-
puter aided design (CAD), computer graphics, AI and DBMS.

11.1 GIS architectures

There are several possible architectures for a GIS:

� Ad Hoc Systems: they are developed for a speci�c problem. They are not modular, nor reusable nor
extensible, nor friendly but are very e�cient.

69

11.1 GIS architectures 11 INTRODUCTION

Figure 7: Ad Hoc GIS.

� Loosely coupled approach: structured information and geometry are stored at di�erent places:

� There is a RDBMS for non spatial data.

� There is a speci�c module for spatial data management.

This allows for modularity, but there are two heterogeneous models in use. This makes it more di�cult
to model, integrate and use. Also, there is a partial loss of basic DBMS functionality (concurrency,
optimization, recovery, querying).

Figure 8: Loosely coupled GIS.

� Integrated approach: this approach is an extended relational system, which makes it modular, exten-
sible, reusable and friendly.

Figure 9: Integrated GIS.

70

12 GEOREFERENCES AND COORDINATE SYSTEMS

12 Georeferences and Coordinate Systems

12.1 Projected coordinate systems

Going from 3D to 2D for Earth representation always involves a projection, so information on the projection is
essential for applications analyzing spatial relationships and the choice of the projection used can in�uence the
results. Also, the Earth is a complex surface whose shape and dimensions cannot be described with mathematical
formulas. Two main reference surfaces are used to approximate the shape of the Earth: the ellipsoid and the
geoid.

The geoid is a reference model for the physical surface of the Earth. It is de�ned as the equipotential surface
of the Earth's gravity �eld which best �ts the global mean sea level and extended through the continents. It
is used in geodesy but it is not very practical to produce maps. Also, since its mathematical description is
unknown, it is impossible to identify mathematical relationships for moving from the Earth to a map.

Figure 10: The geoid.

An ellipsoid is a mathematically de�ned surface that approximates the geoid. It is the 3-dimensional version
of an ellipse.

Figure 11: An ellipse (left) and how it can approximate locally a complex shape (right).

The �attening measures how much the symmetry axis is compressed relative to the equatorial radius, it is
computed by

f =
a− b

a
.

For the Earth, f ∼ 1
300 : the di�erence of the major and minor semi-axis is approximately 21 km. The ellopsoid

is thus used to measure locations, using the latitude and the longitude, for points of interest. These locations
on the ellipsoid are then projected onto a mapping plane. Note that di�erent regions of the world use a di�erent
reference ellipsoid that minimize the di�erences between the geoid and the ellipsoid. For Belgium, the ellipsoid
is GRS80 or WGS84, with a = 6378137 m and f = 1

298.2572 .
This is done because the physical Earth has excursions of +8km and -11km, so the geoid's total variation

goes from -107m to +85m compared to a perfect ellipsoid.

12.1.1 Latitude and longitude

Latitude and longitude are measures of the angles (in degrees) from the center of the Earth to a point on the
Earth's surface. The latitude measures angles in the North-South direction, with the equator being at 0º. The

71

12.1 Projected coordinate systems 12 GEOREFERENCES AND COORDINATE SYSTEMS

longitude measures angles in the East-West direction, with the prime meridian at 0º.
Note that they are not uniform units of distance, because the degrees change di�erently depending on where

in the map we look at. Only along the equator the distance represented by one degree of longitude approximates
the distance represented by one degree of latitude.

Figure 12: The latitude and the longitude.

To produce a map, the curved surface of the Earth, approximated by an ellipsoid is transformed into the
�at plane of the map by means of a map projection. A point on the reference surface of the Earth with
coordinates (ϕ, λ) is transformed into Cartesian coordinates (x, y) representing the positions on the map plane.
Each projection causes deformations in one or another way.

Map projections can be categorized in four ways: shape used, angle, �t and properties.

12.1.2 Shape of projection surface

Di�erent shapes can be used for projection, commonly either a �at plane, a cylinder or a cone. Note that
cylinders and cones are �at shapes, but they can be rolled �at without introducing additional distorsion.

According to this categorization, the projection can be:

� Cylindrical: coordinates projected onto a cylinder. These work best for rectangular areas.

� Conical: coordinates projected onto a cone. These work best for triangle shaped areas.

� Azimuthal: coordinates projected directly onto a �at planar surface. These work best for circular areas.

Figure 13: Shapes of projection surface.

12.1.3 Angle

The angle referes to the alignment of the projection surface, measured as the angle between the main axis of
the Earth and the main symmetry axis of the projection surface:

� Normal: the two axes are parallel.

� Transverse: the two axes are perpendicular.

� Oblique: the two axes are at some other angle.

72

13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

Ideally the plane of projection is aligned as closely as possible with the main axis of the area to be mapped,
minimizing distorsion and scale errors.

Figure 14: Angle of projection.

12.1.4 Fit

The �t is a measure of how closely the projection surface �ts the surface of the Earth:

� Tangent: the projection surface touches the surface of the Earth.

� Secan: the projection surface slices through the Earth.

Distorsion occurs whenever the projection surface is not touching or intersecting the surface of the Earth. Secant
projections usually reduce scale errors, because the two surface intersect in more places and the overall �ts tends
to be better. A globe is the only way to represent the entire Earth without signi�cant scale errors.

Figure 15: Fit of projection.

12.1.5 Geometric deformations

With di�erent projections, di�erent measures are preseved:

� Conformal: preserve shapes and angles. Recommended for navigational charts and topographic maps.

� Equal area: preserve areas in correct relative size. Best suited for thematic mapping.

� Equidistant: preserve distance (only possible at certain locations or in certain directions). Best suited
when measuring distance from a point.

� True-direction: preserve accurate directions.

It is impossible to construct a map that is equal-area and conformal.

13 Conceptual Modelling for Spatial Databases

The data modeling of spatial features requires for multiple views of space (discrete and continuous; 2D, 2.5D
and 3D), multiple representation of the data, at di�erent scales and from di�erent viewpoints, several spatial
abstract data types (point, line, area, set of points,...) and explicit spatial relationships (crossing, adjacency,...).

Let's see this requirements in depth. First, we have interaction requirements:

73

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

� Visual interactions: map displays, information visualizations and graphical queries on maps.

� Flexible, context-dependent interactions.

� Multiple user pro�les (a highway can have constructors, car drivers, hikers,...)

� Multiple instantiations (a building may be a school and a church).

Practical requirements:

� Huge dataset: collecting new data is expensive, so reusing highly heterogeneous datasets is a must... but
it is very complex. The integration requires understanding, so a conceptual model is important.

� Integration of DB with di�erent space/time granularity.

� Coexistence with non-spatial and non-temporal data.

� Reengineering of legacy applications.

� Interoperability.

Thus, conceptual modelling is important because it focuses on the application, it is technology independent,
which increases portability and durability. It is user oriented and uses a formal unambiguous speci�cation,
with the support of visual interfaces for data de�nition and manipulation. It is the best vehicle for information
exchange and integration.

13.1 The Spatiotemporal conceptual manifesto

It has a good expressive power, with a simple data model, with few clean concepts and standard, well-known
semantics. There are no arti�cial constructs and space, time and data structures are treated as orthogonal. It
provieds a clean, visual notation and intuitive icons and symbols, providing a formal de�nition and an associated
query language.

As with temporal DB, in spatial DB there are multiple ways to model the reality, each with its own charac-
teristics. For example:

And there is also a MADS Spatial Type Hierarchy:

74

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

Figure 16: MADS Spatial Type Hierarchy.

We need to keep in mind that the types are topologically closed: all geometries include their boundary.
Geo, SimpleGeo and ComplexGeo are abstract classes.

13.1.1 MADS Spatial datatypes

� Point: its boundary is the empty set.

� Line: it can be of several types:

Its boundary is composed of the extreme points, if any.

� Surface: it is de�ne by 1 exterior boundary and 0 or more interior boundaries, de�ning its holes:

The following are not surfaces:

� Complex geometries: a complex geometry is a geometry composed of several sub-geometries. Its
boundary is de�ned recursively as the spatial union of:

75

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

� The boundaries of its components that do not intersect with other components.

� The intersecting boundaries that do not lie in the interior of their union.

If we have two geometries, a and b, then

B (a ∪ b) = [B (a)− b] ∪ [B (b)− a] ∪ [(B (a) ∩ b) ∪ (B (b) ∩ a)− I (a ∪ b)] ,

where B (x) is the boundary of x and I (x) is the interior of x. A sample classi�cation of di�erent cases
is the following:

13.1.2 Topological predicates

A topological predicate speci�es how two geometries relate to each other. It is based on the de�nition of their
boundary B (x), interior I (x), and exterior E (x), and their dimension Dim (x), which can be -1,0,1 or 2 (-1 is
for the empty set). The dimensionally extended 9-intersection matrix (DE-9IM) is a matrix used for
de�ning predicates. It is based in the following template:

Interior Boundary Exterior
Interior Dim (I (a) ∩ I (b)) Dim (I (a) ∩B (b)) Dim (I (a) ∩ E (b))
Boundary Dim (B (a) ∩ I (b)) Dim (B (a) ∩B (b)) Dim (B (a) ∩ E (b))
Exterior Dim (E (a) ∩ I (b)) Dim (E (a) ∩B (b)) Dim (E (a) ∩ E (b))

It is coded using a dense notation with a string of 9 characters, to represent the cells of the matrix. The
possible characters are:

� T: non-empty intersection.

� F: empty intersection.

� 0: intersection is a point.

� 1: intersection is a line.

� 2: intersection is a surface.

� *: it is irrelevant.

Example 13.1. Disjoint (a, b) is true if their intersection is empty. So, it is

Disjoint (a, b) = [I (a) ∩ I (b) = ∅] ∧ [I (a) ∩B (b) = ∅] ∧ [B (a) ∩ I (b) = ∅] ∧ [B (a) ∩B (b) = ∅] .

Then, it can be coded as 'FF*FF****'.
Let's see some predicates:

� Meets (a, b) ⇐⇒ [I (a) ∩ I (b) = ∅] ∧ [a ∩ b ̸= ∅] ∧ [Dim (a ∩ b) = 0]. Some geometries that satisfy it:

76

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

And some that don't:

� Adjacent (a, b) ⇐⇒ [I (a) ∩ I (b) = ∅] ∧ [a ∩ b ̸= ∅] ∧ [Dim (a ∩ b) = 1] . Some geometries that satisfy it:

And an example that doesn't:

� Touches (a, b) ⇐⇒ [I (a) ∩ I (b) = ∅] ∧ [a ∩ b ̸= ∅] ⇐⇒ Meets (a, b) ∨Adjacent (a, b).

� Crosses (a, b) ⇐⇒ [Dim (I (a) ∩ I (b)) < max {Dim (I (a)) , Dim (I (b))}] ∧ [a ∩ b ̸= a] ∧ [a ∩ b ̸= b] ∧
[a ∩ b ̸= ∅]. Some geometries that satisfy it:

� Overlaps (a, b) ⇐⇒ [Dim (I (a)) = Dim (I (b)) = Dim (I (a) ∩ I (b))] ∧ [a ∩ b ̸= a] ∧ [a ∩ b ̸= b]. Some
geometries that satisfy it:

77

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

� Contains (a, b) ⇐⇒ Within (b, a) ⇐⇒ [I (a) ∩ I (a) ̸= ∅] ∧ [a ∩ b = b]. Some geometries that satisfy it:

� Disjoint (a, b) ⇐⇒ a ∩ b = ∅ ⇐⇒ Intersects (E (a) , b).

� Equals (a, b) ⇐⇒ [a ∩ b = a] ∧ [a ∩ b = b] ⇐⇒ (a− b) ∪ (b− a) = ∅.

� Covers (a, b) ⇐⇒ a ∩ b = b ⇐⇒ b− a = ∅ (same as contains (a, b) but it can have empty interior).

� Encloses (a, b) ⇐⇒ Surrounded (b, a): the de�nition is involved, depending of whether a is a (set of)
line(s) or a (set of) surface(s). Some examples that verify it:

13.1.3 Spatial objects

Objects can be de�ned as spatial:

Country

name
population

13.1.4 Spatial attributes

Both non-spatial and spatial objects types can have spatial attributes. The domain of a spatial attribute is
a spatial type, and can be multi-values. A spatial attribute of a spatial object type may induce a toplogical
constraint (e.g. the capital of a country is located within the geometry of the country), but is is not necessarilly
the case: it depends on application semantics and the application schema must explicitly state these constraints.

Client

name
address

location

Country

name
population

capital

rivers(1,n)

Road

name
responsible

stations(1,n)

Spatial complex attributes

Spatial attributes can be a component of a complex and/or multivalued attribute. It is usual to keep both
thematic (alphanumeric) and location data for attributes, as a capital, for example. This allows to print both
the name and the location in a map. However, in real maps the toponyms have also a location: there are precise
cartographic rules for placing them, so it is a semi-automatic process.

78

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

Country

name
population

capital
name

location

provinces(1,n)
name

location

13.1.5 Spatial objects VS spatial attributes

Representing a concept as a spatial object or as a spatial attribute depends on the application and it is deter-
mined by the relative importance of the concept. This has implications in the way of accessing the instances of
the concept. For example, buildings:

� As spatial objects: the application can access a building one by one.

� As spatial attributes: the access to a building must be made through the land plot containing it.

13.1.6 Generalization: inheriting spatiality.

Spaciality is inherited through generalization, based on the well-known substitutability principle in OOP.
For simple inheritance it is not necessary to re-state the geometry in the subtype and, as usual, spatiality can
be added to a subtype, so that only instances of the subtype have associated spaciality.

Re�ning/rede�ning spatiality

This arises when a spaciality is re-stated in a subtype:

� Re�nement: it restricts the inherited property. The value remains the same in the supertype and the
subtype.

� Rede�nition: it keeps substitutability with respect to typing and allows dynamic binding.

79

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

� Overloading: relaxes substitutability, inhibiting dynamic binding.

Multiple inheritance

Spatiality is inherited from several supertypes, and this creates an ambiguity when referring to the spatiality
of the subtype. Several policies have been proposed for solving this issue in the OO community, and the most
general policy is: all inherited properties are available in the subtype, is the user who must disambiguate in
queries.

13.1.7 Spatial relationships

Spatiality can also be de�ned for relationships, and it is orthogonal to the fact that linked object types are
spatial. If a spatial relationship relates spatial types, spatial constraints may restrict the geometries.

Topological relationships

They are speci�ed on a relationship type that links at least two spatial types, and constraint the spatiality of the
instances of the related types. Many topological constraints can be de�ned using the DE-9IM. The conceptual
model depicts only the most general ones. These are:

80

13.1 The Spatiotemporal conceptual manifesto13 CONCEPTUAL MODELLING FOR SPATIAL DATABASES

13.1.8 Spatial aggregation

Traditional aggregation relatiomnships can link spatial types. Usually, aggregation has exclusive semantics,
stated by cardinalities in the component role. Also, the spatiality of the aggregation is often partitioned into
the spatiality of the components.

Note that it is not the case for the second example, where the spaciality of Antena corresponds to its
coverage, so the same location can be covered by several antennas. Spaciality of the aggregation is the spatial
union of the spaciality of the antennas.

13.1.9 Space and time varying attributes

They are also referred to as continuous �elds, and allow to represent phenomena that change in space and/or
time, such as elevation (to each point there is an associated real number), population (to each point there is an
associated integer) or temperature (to each point in space there is an associated real number, which evolves over
time). At the conceptual level, it can be represented as a continuous function, so operators for manipulating
�elds can be de�ned. At the logical level it can be implemented in several ways:

� Raster: discretize the space into regular cells and assign a value to each cell.

� TIN: keep values at particular locations and use interpolation for calculating the value at any point.

81

14 LOGICAL MODELLING FOR SPATIAL DATABASES

14 Logical Modelling for Spatial Databases

14.1 Representation models

This model try to represent an in�nite sets of points of the Euclidean space in a computer. There two alternative
representations:

� Object-based model (vector): describes the spatial extent of relevant objects with a set of points. It
uses pints, lines and surfaces for describing spaciality and the choice of geometric types is arbitrary, varying
across systems.

� Field-based model (raster): each point in space is associated with one or several values, de�ned as
continuous functions.

14.1.1 Raster model: tesselation

Tesselation is the decomposition of the plane into polygonal units, which might be regular or irregular, depending
on whether the polygonal units are of equal size:

Regular tesselation is used for remote sensing data, while irregular tesselation is used for zoning in social,
demographic or economic data. A spatial Object is represented by the smallest subset of pixels that contains
it.

14.2 Digital Elevation Models (DEMs)

They provide a digital (�nite) representation of an abstract model of space. DEMs are useful to represent a
natural phenomenon that is a continuous function of the 2D space. They are based on a �nite collection of
sample values, and the rest are obtained by interpolation.

Triangulated irregular networks (TINs) are based on a triangular partition of the 2D space:

No assumption is made on the distribution and location of the vertices of the triangles and the elevation
value is recorded at each vertex. The value for the rest of the points is interpolated using linear interpolation
of the 3 vertices of the triangle that contains the point.

82

14.3 Representing the geometry of a collection of objects14 LOGICAL MODELLING FOR SPATIAL DATABASES

14.3 Representing the geometry of a collection of objects

There are three comonly used rperesentations: spaghetti, network and topological, which mainly di�er in the
expression of topological relationships among the component objects.

14.3.1 Spaghetti model

The geometry of any object is described independently of the rest, so no topology is stored in the model: the
topological relationships must be computed on demand. This implies representation redundancy, but enables
heterogeneous representations mixing points, polylines and regions without restrictions.

Advantages:

� Simplicity.

� Provides the end user with easy input of new objects into the collection.

Drawbacks:

� Lack of explicit information about topological relationships among spatial objects.

� Redundancy: problem with large datasets and source of inconsistency.

14.3.2 Network model

It is destined for network or graph based applications. The topological relationships among points and polylines
are stored:

� Nodes: distinguished points that connect a list of arcs.

� Arcs: polyline that starts at a node and ends at a node.

Nodes allow e�cient line connectivity test and network computations. There are two types of points: regular
points and nodes.

Depending on the implementation, the network is planar or nonplanar:

� Planar network: each edge intersection is recorded as a node, even if it does not correspond to a real-world
entity.

� Nonplanar network: edges may cross without producing an intersection.

83

15 SQL/MM

14.3.3 Topological model

It is similar to the network model, except that the network is plannar. It induces a planar subdivision into
adjacent polygons, some of which may not correspond to actual geographic objects:

� Node: represented by a point and the list of arcs starting/ending at it. And isolated point (empty list
of arcs) identi�es the location of point features, such as towers, point of interest,...

� Arc: features its ending points, list of vertices and two polygons having the arc as a common boundary.

� Polygon: represented by a list of arcs, each arc being shared with a neighbor polygon.

� Region: represented by one or more adjacent polygons.

There is no redundancy: each point/line is stored only once.
Advantages: e�cient computation of topological queries, and up-to-date consistency.
Drawbacks: some DB objects have no semantics in real world, and the xomplexity of the structure may slow

down some operations.

15 SQL/MM

15.1 SQL/MM Spatial: Geometry Type Hierarchy

ST_Geometry, ST_Curve and ST_Surface are not instantiable types.

84

15.1 SQL/MM Spatial: Geometry Type Hierarchy 15 SQL/MM

15.1.1 ST_Geometry

Represents 0D, 1D and 2D geometries that exist in 2D, 3D or 4D. Geometries in R2 have points with (x, y)
coordinate values, in R3 it is (x, y, z) or (x, y,m) and in R4 it is (x, y, z,m).

The z usually represents altitude.
The m usually represents a measurement: it is key to support linear networking applications, such as street

routing, transportation or pipelining.
Geometry values are topolo�cally closed, i.e., they include their boundary.
All locations in a geometry are in the same spatial reference system (SRS), and geometric calculations are

done in the SRS of the �rst geometry in the parameter list of a routine. The return value is also in the SRS of
the �rst parameter.

15.1.2 Methods

Metadata

� ST_Dimension: returns the dimension of a geometry.

� ST_CoordDim: returns the coordinate dimension of a geometry.

� ST_GeometryType: returns the type of the geometry as a CHARACTER VARYING value.

� ST_SRID: observes and mutates the spatial reference system identi�er of a geometry.

� ST_Transform: returns the geometry in the speci�ed SRS.

� ST_IsEmpty: tests if a geometry corresponds to the empty set.

� ST_IsSimple: tests if a geometry has no anomalous geometric points.

� ST_IsValid: tests if a geometry is well formed.

� ST_Is3D: tests whether a geometry has z coordinate.

� ST_IsMeasured: tests whether a geometry has m coordinate.

Spatial analysis

� ST_Boundary: returns the boundary of a geometry.

� ST_Envelope: returns the bounding rectangle of a geometry.

85

15.1 SQL/MM Spatial: Geometry Type Hierarchy 15 SQL/MM

� ST_ConvexHull: returns the convex hull of a geometry.

� ST_Bu�er: returns the geometry that represents all points whose distance from any point of a geometry
is less than or equal to a speci�ed value.

� ST_Union: returns the geometry that represents the point set union of two geometries.

� ST_Intersection: returns the geometry that represent the point set intersection of two geometries.

� ST_Di�erence: returns the geometry that represents the point set di�erence of two geometries.

� ST_SymDi�erence: returns the geometry that represents the point set symmetric di�erence of two ge-
ometries.

� ST_Distance: returns the distance between two geometries.

Input/Output

� ST_WTKToSQL: returns the geometry for the speci�ed well-known text representation.

� ST_AsText: returns the well-known text representation for the speci�ed geometry.

� ST_WKBToSQL: returns the geometry for the speci�ed well-known binary representation.

� ST_AsBinary: returns the well-known binary representation for the speci�ed geometry.

� ST_GMLToSQL: returns the geometry for the speci�ed GML representation.

� ST_AsGML: returns the GML representation for the speci�ed geometry.

� ST_GeomFromText: returns a geometry, which is transformed from a CHARACTER LARGE OBJECT
value that represents its well-known text representation.

� ST_GeomFromWKB: returns a geometry, which is transformed from a BINARY LARGE OBJECT value
that represents its well-known binary representation.

� ST_GeomFromGML: returns a geometry, which is transformed from a CHARACTER LARGE OBJECT
value that represents its GML representation.

86

15.1 SQL/MM Spatial: Geometry Type Hierarchy 15 SQL/MM

Boundary, Interior, Exterior

Boundary of a geometry: set of geometries of the next lower dimension.

� ST_Point or ST_MultiPoint: empty set.

� ST_Curve: start and end ST_Point values if nonclosed, empty set if closed.

� ST_MultiCurve: ST_Point values that in the boundaries of an odd number of its element ST_Curve
values.

� ST_Polygon: its set of linear rings.

� ST_Multipolygon: set of linear rings of its ST_Polygon values.

� Arbitrary collection of geometries whose interiors are disjoint: geometries drawn from the boundaries of
the element geometries by application of the mod 2 union rule.

� The domain of geometries considered consists of those values that are topologically closed.

Interior of a geometry: points that are left when the boundary is removed.
Exterior of a geometry: points not in the interior or boundary.

Spatial relationships

� ST_Equals: tests if a geometry is spatially equal to another geometry.

� ST_Disjoint: tests if a geometry is spatially disjoint from another geometry.

� ST_Intersects: tests if a geometry spatially intersects another geometry.

� ST_Touches: tests if a geometry spatially touches another geometry.

� ST_Crosses: tests if a geometry spatially crosses another geometry.

� ST_Within: tests if a geometry is spatially within another geometry.

� ST_Contains: tests if a geometry spatially contains another geometry.

� ST_Overlaps: tests if a geometry spatially overlaps another geometry.

� ST_Relate: tests if a geometry is spatially related to another geometry by testing for intersections
between their interior, boundary and exterior as speci�ed by the intersection matrix. For example:
a.ST_Disjoint(b)=a.ST_Relate(b,'FF*FF****').

87

15.1 SQL/MM Spatial: Geometry Type Hierarchy 15 SQL/MM

15.1.3 Example of conceptual schema

To create the tables:

1 Create Table Country(

2 country_code integer ,

3 country_name varchar (30),

4 geometry ST_MultiPolygon ,

5 Primary Key (country_code))

6

7 Create Table State(

8 state_code integer ,

9 state_name varchar (30),

10 country_code integer ,

11 geometry ST_MultiPolygon ,

12 Primary Key (state_code),

13 Foreign Key (country_code) References Country)

14

15 Create Table County(

16 county_code integer

17 county_name varchar (30),

18 state_code integer ,

19 population integer ,

20 geometry ST_MultiPolygon ,

21 Primary Key (county_code),

22 Foreign Key (state_code) References State)

23

24 /* Table Highway is NOT spatial */

25 Create Table Highway(

26 highway_code integer ,

27 highway_name varchar (4),

28 highway_type varchar (2),

29 Primary Key (highway_code))

30

31 Create Table HighwaySection(

32 section_code integer ,

33 section_number integer ,

34 highway_code integer ,

35 Primary Key (section_code ,highway_code),

88

15.1 SQL/MM Spatial: Geometry Type Hierarchy 15 SQL/MM

36 Foreign Key (section_code) References Section ,

37 Foreign Key (highway_code) References Highway)

38

39 Create Table Section(

40 section_code integer ,

41 section_name varchar (4),

42 number_lanes integer ,

43 city_start varchar (30),

44 city_end varchar (30),

45 geometry ST_Line ,

46 Primary Key (section_code),

47 Foreign Key (city_start) References City ,

48 Foreign Key (city_end) References City)

49

50 Create Table City(

51 city_name varchar (30),

52 population integer ,

53 geometry ST_MultiPolygon ,

54 Primary Key (city_name))

55

56 Create Table LandUse(

57 region_name varchar (30),

58 land_use_type varchar (30),

59 geometry ST_Polygon ,

60 Primary Key (region_name))

15.1.4 Reference queries: alphanumerical criteria

Number of inhabitants in the county of San Francisco:

1 select population

2 from County

3 where county_name = 'San Francisco '

List of the counties of the state of California:

1 select county_name

2 from County , State

3 from State.state_code = County.state_code

4 and state_name = 'California '

Number of inhabitants in the US:

1 select sum (c2.population)

2 from Country c1, State s, County c2

3 where c1.country_name = 'USA'

4 and c1.country_code = s.country_code

5 and s.state_code = c2.state_code

Number of lanes in the �rst section of Interstate 99:

1 select s.number_lanes

2 from Highway h1, HighwaySection h2, Section s

3 where h1.highway_code = h2.highway_code

4 and h2.section_code = s.section_code

5 and h1.highway_name = 'I99'

6 and h2.section_number = 1

Name of all sections that constitute Interstate 99:

1 select s.section_name

2 from Highway h1, HighwaySection h2, Section s

3 where h1.highway_name = 'I99'

4 and h1.highway_code = h2.highway_code

5 and h2.section_code = s.section_code

89

15.1 SQL/MM Spatial: Geometry Type Hierarchy 15 SQL/MM

15.1.5 Reference queries: spatial criteria

Counties adjacent to the county of San Francisco in the same state:

1 select c1.county_name

2 from County c1, County c2

3 where c2.county_name = 'San Francisco '

4 and c1.state_code = c2.state_code

5 and ST_Touches(c1.geometry , c2.geometry)

Display of the state of California (supposing that the State table is non spatial):

1 select ST_Union(c.geometry)

2 from County c, State s

3 where s.state_code = c.state_code

4 and s.state_name = 'California '

Counties larger than the largest county in California:

1 select c1.county_name

2 from County c1

3 where ST_Area(c1.geometry) > (select max (ST_Area(c.geometry))

4 from County c, State s

5 where s.state_code = c.state_code

6 and s.state_name = 'California ')

Length of Interstate 99:

1 select sum (ST_Length(s.geometry))

2 from Highway h1, HighwaySection h2, Section s

3 where h1.highway_name = 'I99'

4 and h1.highway_code = h2.highway_code

5 and h2.section_code = s.section_code

All highways going through the state of California:

1 select distinct h1.highway_name

2 from State s1, Highway h1, HighwaySection h2, Section s2

3 where s1.state_name = 'California '

4 and h1.highway_code = h2.highway_code

5 and h2.section_code = s2.section_code

6 and ST_Overlaps(s2.geometry , s1.geometry)

Display all residential areas in the county of San Jose:

1 select ST_Intersection(l.geometry , c.geometry)

2 from County c, LandUse l

3 where c.county_name = 'San Jose'

4 and l.land_use_type = 'residential area'

5 and ST_Overlaps(l.geometry , c.geometry)

Overlay the map of administrative units and land use:

1 select county_name , land_use_type , ST_Intersection(c.geometry , l.geometry)

2 from County c, LandUse l

3 where ST_Overlaps(c.geometry , l.geometry)

15.1.6 Reference queries: interactive queries

Description of the county pointed to on the screen:

1 select county_name , population

2 from County

3 where ST_Contains(geometry , @point)

Counties that intersect a given rectangle on the screen:

1 select county_name

2 from County

3 where ST_Overlaps(geometry , @rectangle)

90

16 REPRESENTATIVE SYSTEMS

Part of counties that are withini a given rectangle on the screen (clipping):

1 select ST_Intersection(geometry , @rectangle)

2 from County

3 where ST_Overlaps(geometry , @rectangle)

Description of the highway section pointed to on the screen:

1 select section_name , number_lanes

2 from Section

3 where ST_Contains(geometry , @point)

Description of the highways of which a section is pointed to on the screen:

1 select h1.highway_name , h1.highway_type

2 from Highway h1, HighwaySection h2, Section s

3 where h1.highway_code = h2.highway_code

4 and h2.section_code = s.section_code

5 and ST_Contains(s.geometry , @point)

16 Representative Systems

16.1 Oracle Locator

Included in all editions of the DB, with all functions required for standard GIS tools and all geometric objects
(Points, lines and polygons in 2D, 3D and 4D). It uses indexing with quadtrees and rtrees and supports geometric
queries, proximity search, distance calculation, multiple projection and conversion of projections.

16.1.1 Oracle Spatial

It is an option or Oracle DB Enterprise edition, which extends the locator with geometric transformations,
spatial aggregations, dynamic segmentation, measures, network modelling, topology, raster, geocoder, spatial
data mining, 3D types and Web Services.

16.1.2 Oracle Network Model

It is a data model for representing networks in the database. It maintains connectivity and attributes at the
link and node levels. It is used for networks management and as a navigation engine for route calculation.

16.1.3 Oracle Topological Model

It persists the storage of the topology with nodes, arcs and faces, and the topological relations, allowing for
advanced consistency checks. The data model allows to de�ne objects through topological primitives and adds
the type SDO_TOPO_GEOMETRY. It coexists with traditional spatial data.

16.1.4 Oracle Geo Raster

It adds the new data type SDO_GEORASTER, providing an open, general purpose raster data model, with
storage and indexing of raster data, as well as the ability to query an analyze raster data.

16.1.5 Oracle geocoding

Generates latitude/longitude points from address. It is an international addressing standardization, working
with formatted and unformatted addresses. Its tolerance parameters support fuzzy matching.

16.1.6 Oracle MapViewer

It is supplied with all versions of Oracle Application Server, providing XML, Java and JS interfaces. It is a tool
for map de�nition, for maps described in the database, thematic maps.

91

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

16.1.7 Oracle: geometry type

To create a spatial table in Oracle:

1 CREATE TABLE Cells (

2 Cell_id NUMBER ,

3 Cell_name VARCHAR2 (32),

4 Cell_type NUMBER ,

5 Location SDO_GEOMETRY ,

6 Covered_area SDO_GEOMETRY);

16.1.8 Oracle: geometrical primitives

� Point: represents point objects in 2, 3 or 4 dimensions.

� Line: represents linear objects and is formed of straight lines or arcs. A closed line does not delineate a
surface and self-crossing lines are allowed. They are encoded as a list of points (x1, y1, ..., xn, yn).

� Polygon: represents surface objects. The contour must be closed and the interior can contain one or more
holes. The boundary cannot intersect and it is formed by straight lines or arcs (or a combination). Some
speci�c forms as rectangles and circles can be expressed more e�ciently.

16.1.9 Oracle: element

An element is the basic component of geometric objects. The type of an element can be point, line or polygons.
Fromed of an ordered sequence of points.

16.1.10 Oracle: geometry

Represents a spatial object and is composed of an ordered list of elements, which may be homogeneous or
heterogeneous.

16.1.11 Oracle: layer

Represents a geometrical column in a table. In general, it contains objects of the same nature.

92

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

16.1.12 SDO_GEOMETRY type

Structure:

1 SDO_GTYPE NUMBER

2 SDO_SRID NUMBER

3 SDO_POINT SDO_POINT_TYPE

4 SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY

5 SDO_ORDINATES SDO_ORDINATE_ARRAY

Example:

1 CREATE TABLE states (

2 state VARCHAR2 (30),

3 totpop NUMBER (9),

4 geom SDO_GEOMETRY);

SDO_GTYPE
De�ne the nature of the geometric shape contained in the object.

SDO_SRID
SRID = Spatial Reference System ID. It speci�es the coordinate system of the object. The list of possible

values is in the table MDSYS.CS:SRS. A common value is 8307: which is 'Longitude/Latitude WGS84', used
by the GPS system. All geometries of a layer must have the same SRID. Layers may have di�erent SRIDs.
Automatic conversion for spatial queries.

SDO_POINT
Structure

1 x NUMBER

2 y NUMBER

3 z NUMBER

Example

1 INSERT INTO TELEPHONE_POLES (col -1, ..., col -n, geom)

2 VALUES (attribute -1, ..., attribute -n,

3 SDO_GEOMETRY (

4 2001, 8307,

5 SDO_POINT_TYPE (-75.2 ,43.7, null),

6 null , null)

7);

SDO_ORDINATES
Object type SDO_ORDINATE_ARRAY which is VARRAY (1048576) OF NUMBER. It stores the coor-

dinates of lines and polygons.

93

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

SDO_ELEM_INFO
Object type SDO_ELEM_INFO_ARRAY which is VARRAY (1048576) OF NUMBER. It speci�es the

nature of the elements and describes the various components of a complex object. There three entries per
element:

� Ordinate o�set: position of the �rst number for this element in the array SDO_ORDINATES.

� Element type: type of the element.

� Interpretation: straight line, arc,..

Examples of geometries:
Line:

94

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

Polygon:

Multipoint:

Constructing a line

1 INSERT INTO LINES (col -1, ..., col -n, geom) VALUES (

2 attribute_1 , ..., attribute_n ,

3 SDO_GEOMETRY (

4 2002, 8307, null ,

5 SDO_ELEM_INFO_ARRAY (1,2,1),

6 SDO_ORDINATE_ARRAY (

7 10,10, 20,25, 30,10, 40,10))

8);

Metadata
De�nes the boundaries of a layer, i.e., minimum and amximium coordinates for each dimension. Sets the

tolerance of a layer, i.e., the maximum distance between two points for them to be considered di�erent. And
de�nes the coordinate system for a layer.

Example:

1 INSERT INTO USER_SDO_GEOM_METADATA (TABLE_NAME , COLUMN_NAME , DIMINFO , SRID) VALUES (

2 'ROADS', 'GEOMETRY ',

3 SDO_DIM_ARRAY (

4 SDO_DIM_ELEMENT('Long', -180, 180, 0.5),

5 SDO_DIM_ELEMENT('Lat', -90, 90, 0.5)), 8307);

Constructing geometries

1 -- Standard constructor

2 INSERT INTO TELEPHONE_POLES (col -1, ..., col -n, geom) VALUES (attribute -1, ..., attribute -n,

3 SDO_GEOMETRY (

95

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

4 2001, 8307,

5 SDO_POINT_TYPE (-75.2 ,43.7, null),

6 null , null)

7);

8

9 -- Well -Known Text (WKT) constructor

10 INSERT INTO TELEPHONE_POLES (col -1, ..., col -n, geom) VALUES (attribute -1, ..., attribute -n,

11 SDO_GEOMETRY ('POINT (-75.2 43.7)' ,8307)

12);

13

14 -- Well -Known Binary (WKB) constructor

15 INSERT INTO TELEPHONE_POLES (col -1, ..., col -n, geom) VALUES (attribute -1, ..., attribute -n,

16 SDO_GEOMETRY (:my_blob ,8307)

17);

16.1.13 Oracle: Spatial indexes

� R-tree indexing: tree rectangles that provide indexing in 2 or 3 dimensions. It is based on theMinimum
Bounding Rectangle (MBR) of objects.

To create an index:

1 CREATE INDEX Customer_Idx ON Customers(Location)

2 INDEXTYPE IS MDSYS.SPATIAL_INDEX;

The CREATE INDEX statement may have additional parameters. To delete the index:

1 DROP INDEX <index -name >;

� Quad-tree indexing: use a regular grid. It is not maintained in oracle now.

A spatial index must exists before we can ask spatial queries on a table.

96

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

16.1.14 Oracle: query execution model

But it can be optimized:

16.1.15 Oracle: writing spatial queries

They contain a sptail predicate, and are expressed through speci�c SQL operators: SDO_RELATE, SDO_INSIDE,
SDO_TOUCH, SDO_WITHIN_DISTANCE, SDO_NN. The spatial index must exists, otherwise we will get
an error message.

Topological predicates

97

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

They select objects by their topological relationship with another object: SDO_INSIDE, SDO_CONTAINS,
SDO_COVERS, SDO_COVEREDBY, SDO_OVERLAPS, SDO_TOUCH, SDO_EQUAL, SDO_ANYINTERACT.

The SDO_RELATE is a generic operator for which we can specify a mask, that can be 'INSIDE', 'CON-
TAINS', 'TOUCH',... or a combination as 'INSIDE+CONTAINS'

Sample queries
Which parks are entirely contianed in the state of Wyoming:

1 -- way 1

2 SELECT p.name

3 FROM us_parks p, us_states s

4 WHERE s.state = 'Wyoming '

5 AND SDO_INSIDE (p.geom , s.geom) = 'TRUE';

6

7 -- way 2

8 SELECT p.name

9 FROM us_parks p, us_states s

10 WHERE s.state = 'Wyoming '

11 AND SDO_RELATE(p.geom ,s.geom ,'MASK=INSIDE ') = 'TRUE';

Which states contain all or part of Yellowstone Park:

1 SELECT s.state

2 FROM us_states s, us_parks p

3 WHERE SDO_ANYINTERACT (s.geom , p.geom) = 'TRUE'

4 AND p.name = 'Yellowstone NP';

In which competing jurisdictions is my client:

1 SELECT s.id, s.name

2 FROM customers c, competitors_sales_regions s

3 WHERE c.id = 5514 AND SDO_CONTAINS (s.geom , c.location) = 'TRUE';

Find all counties around Passaic County:

1 SELECT c1.county , c1.state_abrv

2 FROM us_counties c1, us_counties c2

3 WHERE c2.state = 'New Jersey ' AND c2.county = 'Passaic '

4 AND SDO_TOUCH (c1.geom , c2.geom) = 'TRUE';

Queries with a constant window
Find all customers of type Platinum in a rectangular area:

1 SELECT name , category

2 FROM customers

3 WHERE SDO_INSIDE (location ,

4 sdo_geometry (2003, 8307, null ,

5 sdo_elem_info_array (1 ,1003 ,3),

6 sdo_ordinate_array (-122.413 , 37.785 , -122.403 , 37.792)))

7 ='TRUE'

8 AND customer_grade = 'PLATINUM ';

In which competitor sales territories is located a geographical point:

1 SELECT id, name

2 FROM competitors_sales_regions

3 WHERE SDO_CONTAINS (geom ,

4 SDO_GEOMETRY (2001 , 8307,

5 SDO_POINT_TYPE (-122.41762 , 37.7675089 , NULL),

6 NULL , NULL)

7 = 'TRUE';

Queries based on distance
These are used to select objects according to distance from another point. Distance can be expressed in any

unit of distance and if no unit is speci�ed, the distance is expressed in the unit of the coordinate system. For
longitude/latitude data, these are meters. The function used is SDO_WITHIN_DISTANCE.

Which agencies are less than 1km form this client:

98

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

1 SELECT b.id, b.phone_number

2 FROM customers c, branches b

3 WHERE c.id = 8314

4 AND SDO_WITHIN_DISTANCE(b.location , c.location ,'distance =1 unit=km')= 'TRUE';

How many customers in each category are located within 1/4 mile of my o�ce number 77:

1 SELECT customer_grade , COUNT (*)

2 FROM branches b, customers c

3 WHERE b.id=77

4 AND SDO_WITHIN_DISTANCE (c.location , b.location ,'DISTANCE =0.25 UNIT=MILE')='TRUE'

5 GROUP BY customer_grade;

Research based on proximity
These select the N closest objects of another objects: SDO_NN. ROWNUM can be used to limit result.

SDO_NN_DISTANCE is used to categorize answers by distance.
What is the nearest o�ce to this client?

1 SELECT b.id, b.phone_number

2 FROM customers c, branches b

3 WHERE c.id = 8314

4 AND SDO_NN(b.location , c.location ,'sdo_num_res =1')= 'TRUE';

What are my �ve customers closest to this competitor:

1 SELECT c.id, c.name , c.customer_grade

2 FROM competitors co, customers c

3 WHERE co.id=1

4 AND SDO_NN (c.location , co.location ,'SDO_NUM_RES =5')='TRUE' ;

This only works if no other selection criterion is present.
What are my �ve customers closest to this competitor, and give the distance:

1 SELECT c.id, c.name , c.customer_grade , SDO_NN_DISTANCE (1) distance

2 FROM competitors co, customers c

3 WHERE co.id=1

4 AND SDO_NN (c.location , co.location ,'SDO_NUM_RES =5', 1)='TRUE'

5 ORDER BY distance;

If we want to add more �lters, we cannot use the SDO_NN function, because it is evaluated �rst. We have
to do the trick with SDO_DISTANCE+ORDER BY+ROWNUM.

Spatial Join
It is used to �nd correlations between two tables, based on topology or distance. It compares all objects

in a table with all those of another table, so it requires a R-Tree on each table. Technically implemented as a
function that returns a table: the SDO_JOIN.

Associate with each GOLD customer the sales territory in which is is located:

1 SELECT s.id, c.id, c.name

2 FROM customers c, sales_regions s, TABLE(SDO_JOIN('customers ','location ','sales_regions ','geom

','mask=inside ')) j

3 WHERE j.rowid1 = c.rowid

4 AND j.rowid2 = s.rowid

5 AND c.customer_grade = 'GOLD'

6 ORDER BY s.id, c.id;

Find all gold customers who are less than 500 meters from one of our branches in San Francisco:

1 SELECT DISTINCT c.id, c.name , b.id

2 FROM customers c, branches b, TABLE(SDO_JOIN('CUSTOMERS ','LOCATION ','BRANCHES ','LOCATION ','

DISTANCE =500 UNIT=METER ')) j

3 WHERE j.rowid1 = c.rowid

4 AND j.rowid2 = b.rowid

5 AND c.customer_grade = 'GOLD'

6 AND b.city = 'SAN FRANCISCO ';

Spatial functions

99

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

Objects must be in the same coordinate system.
What is the total area of Yellowstone National Park:

1 SELECT sdo_geom.sdo_area(geom ,0.005 ,'unit=sq_km ')

2 FROM us_parks

3 WHERE name = 'Yellowstone NP';

What is the length of the Mississippi riveer:

1 SELECT sdo_geom.sdo_length(geom ,0.005 ,'unit=km')

2 FROM us_rivers

3 WHERE name = 'Mississippi ';

What is the distance between Los Angeles and San Francisco:

1 SELECT sdo_geom.sdo_distance(a.location , b.location , 0.005 , 'unit=mile')

2 FROM us_cities a, us_cities b

3 WHERE a.city = 'Los Angeles '

4 AND b.city = 'San Francisco ';

Generating objects

� SDO_BUFFER(g,size) generates a bu�er of the size chosen.

� SDO_CENTROID(g) calculates the center of gravity of a polygon.

� SDO_CONVEXHULL(g): generates the convex hull of the object.

� SDO_MBR(g) generates the bulk of the rectangle object.

Combining objects

� SDO_UNION(g1,g2)

� SDO_INTERSECTION(g1,g2)

� SDO_DIFFERENCE(g1,g2)

� SDO_XOR(g1,g2) is the symmetric di�erence.

What is the area occupied by the Yellowstone Park in the state it occupies:

1 SELECT s.state , sdo_geom.sdo_area (sdo_geom.sdo_intersection (s.geom , p.geom , 0.5) ,0.5, 'unit=

sq_km') area

2 FROM us_states s, us_parks p

3 WHERE SDO_ANYINTERACT (s.geom , p.geom) = 'TRUE'

4 AND p.name = 'Yellowstone NP';

Spatial aggregation
Aggregate functions operate on the set of objects.

� SDO_AGGR_MBR: returns the rectangle of space around a set of objects.

� SDO_AGGR_UNION: computes the union of a set of geometric objects.

� SDO_AGGR_CENTROID: calculates the centroid of a set of objects.

100

16.1 Oracle Locator 16 REPRESENTATIVE SYSTEMS

� SDO_AGGR_CONVEXHULL: calculates the convex hull around a set of objects.

Find the focal point of all our customers in Daly City:

1 SELECT SDO_AGGR_CENTROID(SDOAGGRTYPE(location ,0.5)) center

2 FROM customers

3 WHERE city = 'DALY CITY';

Calculate the number of customer in each zip code, and calculate the focal point for these clients:

1 SELECT COUNT (*), postal_code , SDO_AGGR_CENTROID(SDOAGGRTYPE(location ,0.5)) center

2 FROM customers

3 GROUP BY postal_code;

101

REFERENCES REFERENCES

References

[1] Esteban Zimanyi. Infoh415 advanced databases. Lecture Notes.

102

	I Active Databases
	Introduction
	Representative Systems and Prototypes
	Starbust
	Starbust Semantics
	Correctness of rules
	State transitions and net effect
	More Starbust commands

	Oracle
	Oracle semantics
	Instead-of triggers

	DB2
	DB2 semantics

	SQL Server
	SQL Server Semantics
	Limitations
	Nested and Recursive triggers
	Trigger management

	Applications of Active Rules
	A summary of Integrity Constraints
	Management of Derived Data
	Virtual views with rules
	Replication with rules

	Business Rules: Advantages and Difficulties
	Advantages
	Dificulties

	A case study: Energy Management System
	Connect a new user
	Propagation of power reduction from a user
	Propagation of power reduction from a node
	Propagation of power reduction from a branch to a node
	Propagation of power reduction from a branch to a distributor
	Propagation of power increase from a user
	Propagation of power increase from a node
	Propagation of power increase from a branch to a node
	Propagation of power increase from a branch to a distributor
	Excess power requested from a distributor
	Propagate power change from a branch to its wires
	Change wire type if power passess threshold
	Add a wire to a branch

	II Graph Databases
	Introduction
	CAP theorem
	Graph DB model: graphs
	The Resource Description Framework (RDF) Model
	The property graph data model
	Implementation: adjacency list
	Implementation: incidence list
	Implementation: adjacency matrix
	Implementation: incidence matrix

	Neo4j
	File storage
	Caching

	Cypher
	Nodes
	Edges
	Queries

	III Temporal Databases
	Introduction
	Time Ontology
	TSQL2: Time ontology
	Time and facts

	Temporal Conceptual Modeling
	The conceptual manifesto
	MADS temporal data types
	Temporal objects
	Non-temporal objects
	Temporal attributes
	Attribute timestamping properties
	Temporal generalization
	Temporal relationships
	Synchronization relationships
	Example of a temporal schema

	Manipulating Temporal Databases with SQL-92
	Temporal statements
	Temporal keys
	Sequenced primary key

	Handling Now
	Duplicates
	Preventing duplicates

	Referential integrity
	Case 1: neither table is temporal
	Case 2: both tables are temporal
	Case 3: Only the referenced table is temporal

	Querying valid-time tables
	Extracting prior states
	Sequenced queries
	Nonsequenced queries
	Sequenced aggregation function
	Sequenced division

	Temporal Support in current DBMSs and SQL 2011
	Oracle
	Teradata
	DB2
	SQL 2011

	IV Spatial Databases
	Introduction
	GIS architectures

	Georeferences and Coordinate Systems
	Projected coordinate systems
	Latitude and longitude
	Shape of projection surface
	Angle
	Fit
	Geometric deformations

	Conceptual Modelling for Spatial Databases
	The Spatiotemporal conceptual manifesto
	MADS Spatial datatypes
	Topological predicates
	Spatial objects
	Spatial attributes
	Spatial objects VS spatial attributes
	Generalization: inheriting spatiality.
	Spatial relationships
	Spatial aggregation
	Space and time varying attributes

	Logical Modelling for Spatial Databases
	Representation models
	Raster model: tesselation

	Digital Elevation Models (DEMs)
	Representing the geometry of a collection of objects
	Spaghetti model
	Network model
	Topological model

	SQL/MM
	SQL/MM Spatial: Geometry Type Hierarchy
	ST_Geometry
	Methods
	Example of conceptual schema
	Reference queries: alphanumerical criteria
	Reference queries: spatial criteria
	Reference queries: interactive queries

	Representative Systems
	Oracle Locator
	Oracle Spatial
	Oracle Network Model
	Oracle Topological Model
	Oracle Geo Raster
	Oracle geocoding
	Oracle MapViewer
	Oracle: geometry type
	Oracle: geometrical primitives
	Oracle: element
	Oracle: geometry
	Oracle: layer
	SDO_GEOMETRY type
	Oracle: Spatial indexes
	Oracle: query execution model
	Oracle: writing spatial queries

