
INFOH417 - Database Systems Architecture

Jose Antonio Lorencio Abril

Fall 2022

Professor: Mahmoud Sakr

Student e-mail: jose.lorencio.abril@ulb.be

1

This is a summary of the course Database Systems Architecture, taught at the Université Libre de Bruxelles by
Professor Mahmoud Sakr in the academic year 22/23. Most of the content of this document is adapted from
the course notes by Sakr, [3], so I won't be citing it all the time. Other references will be provided when used.

2

CONTENTS CONTENTS

Contents

I Query Planning: Translating SQL into Relational Algebra 7

1 Relational Algebra 7
1.1 The extended relational algebra . 7
1.2 Relational algebra expressions . 10

2 Translating SQL into Relational Algebra 11
2.1 SELECT-FROM-WHERE statemets without subqueries . 11
2.2 Normalizing WHERE-subqueries into EXISTS and NOT EXISTS form 11
2.3 Translating SELECT-FROM-WHERE subqueries . 13
2.4 De-correlation of subqueries appearing in a conjunctive WHERE condition 13

2.4.1 Translating ϕ . 14
2.4.2 De-correlating EXISTS subqueries . 14
2.4.3 De-correlating NOT EXISTS subqueries . 15
2.4.4 Translating the Select-list . 15

2.5 Flattening subqueries in bag-based relations . 15

II Query Optimization 17

3 System-R 17
3.1 Architecture Components . 17
3.2 Query language . 17

3.2.1 Data manipulation . 17
3.2.2 Data de�nition . 18
3.2.3 Data Control . 19

3.3 Catalogues . 19
3.4 Cursors . 19
3.5 Clustering images . 20
3.6 Optimizer . 20

3.6.1 Simple query optimization . 20
3.6.2 Join query optimization . 21
3.6.3 Optimized Packages . 22

3.7 PostgreSQL in relation to System R . 22

4 Query Optimization 23
4.1 Cost-based query optimization . 23
4.2 Viewing query evaluation plans . 23
4.3 Generating equivalent expressions . 24
4.4 Enumeration of equivalent expressions . 26
4.5 Cost estimation . 26
4.6 Choice of execution plan . 26

4.6.1 Best join-order problem . 26

5 Statistics for cost estimation 29
5.1 Histograms . 29
5.2 Estimation of selection size . 29
5.3 Estimation of the size of joins . 30

III Indexing 32

3

CONTENTS CONTENTS

6 Conventional indexes 32
6.1 Sparse second level index . 34
6.2 How to deal with duplicate keys. 35
6.3 How to delete records . 39

6.3.1 Deletion from sparse index with no duplicates . 39
6.3.2 Deletion from dense index . 40

6.4 How to insert records . 40
6.5 Secondary indexes . 41

6.5.1 Duplicate values and secondary indexes . 41

7 B-Trees 44
7.1 Lookup in BTree . 45
7.2 Range queries . 46
7.3 Insertion into a BTree . 47
7.4 Deletion from a BTree . 48

IV Physical Query Plans 50

8 Physical Query Plans 50
8.1 Computing joins . 50
8.2 Factors that a�ect performance . 51

V Extensibility 57

9 Extensible databases: PostgreSQL 57
9.1 Types . 57

9.1.1 Base types . 57
9.1.2 Container types . 57
9.1.3 Domains . 57
9.1.4 Pseudo-types . 57
9.1.5 Polymorphic types . 58

9.2 Functions . 58
9.2.1 SQL functions . 58
9.2.2 Procedural functions . 58
9.2.3 Internal functions . 59
9.2.4 C-Language functions . 59
9.2.5 Function volatility categories . 59

9.3 Procedures . 59
9.4 Interfacing extensions to indexes . 60
9.5 Steps to create a PostgreSQL extension . 60

VI Failure Recovery and concurrency control 61

10 Failure recovery 61
10.1 Key problem: un�nished transactions . 61
10.2 Logging . 63

10.2.1 Undo logging . 63
10.2.2 Redo logging . 66
10.2.3 Checkpointing with undo logging . 67
10.2.4 Checkpointing with redo logging . 68
10.2.5 Undo/Redo logging . 69

4

CONTENTS CONTENTS

11 Concurrency control 69
11.1 Schedules: serial, serializable and con�ict-serializable . 70
11.2 How to enforce serializability: locking . 73

11.2.1 Option 1: let luck be our friend . 73
11.2.2 Option 2: a locking protocol . 73

11.3 Shared locks . 75
11.4 More types of locks . 76

11.4.1 Increment lock . 76
11.4.2 Update lock . 76

11.5 Lock granularity . 77

VII Distributed Databases 81

12 Distributed databases 81
12.1 Data distribution . 81
12.2 Distributed data access: distributed SQL . 82
12.3 Distributed transactions . 85

12.3.1 Atomicity . 85
12.3.2 Isolation . 85
12.3.3 Considerations . 85

12.4 Replication . 86
12.4.1 Quorums . 86
12.4.2 Follow the leader . 86
12.4.3 N-directional . 86

12.5 CAP theorem . 86
12.6 PACELC theorem . 86
12.7 More trade-o�s . 87

5

LIST OF FIGURES LIST OF ALGORITHMS

List of Figures

1 Architecture of System R . 17
2 Result of the program. Stored data in EMP (left). Active Set (right). 18
3 A left-deep join tree (top) and not a left-deep join tree (bottom). 28
4 A BTree. Source: [2]. 45

List of Algorithms

1 procedure �ndbestplan(S) . 27
2 Iteration Join . 50
3 Merge Join . 51
4 Index Join . 51
5 Hash Join (k buckets G1...Gk, H1...Hk) . 51
6 Undo logging: recovery rules . 66
7 Redo logging: recovery rules . 67

6

1 RELATIONAL ALGEBRA

Part I

Query Planning: Translating SQL into Relational

Algebra

1 Relational Algebra

We are going to start with some de�nitions:

De�nition 1.1. A relation is a table whose columns have names, called attributes. The set of all
attributes is called the schema of the relation. The rows of the table are tuples of values for each of
the attributes, and are called simply tuples. We are going to denote R a relation, and we will express
it as R ∼ [A1, ..., An] to indicate the schema of the relation, Ai, i = 1, ..., n are the attributes of the
schema. If two relations, R and R′, share the same schema, we will simply write R ≃ R′a.
A relation is set-based if there are no duplicate tuples in it. If this is not the case, the relation is
bag-based.
A relational algebra operator takes as input 1 or more relations and produces as output a new
relation. More formally, if we have a set of relations Σ = {R1, ..., Rn} ⊂ U , where U identi�es the set of
all possible relations, a relational algebra operator is a function

Op : P (Σ)→ U ,

being P (Σ) the power set of Σ.

aNote that the relationship ≃ de�nes an equivalence relationship whose equivalence groups are all relations with the

same schema.

Example 1.1. As an example, we can take Σ = {StarsIn,MovieStar}, StartsIn = [starName, filmName],
MovieStar = [name, birthDate]. In this case, an operator Op could be such that produces the relation that
contains all names of �lms in which some movie stars in MovieStar born in 1960 participated.

In this example, we have explained what we would like our operator to do, but we need some way to actually
compute this. For this, there are some basic operators that can be combined to create complex operators.

1.1 The extended relational algebra

Let's de�ne a set of operators that are useful:
The union of two relations with the same schema returns another relation with the same schema and all

tuples in any of the two input relations: Let Ri, Rj ∈ Σ such that Ri ≃ Rj , then

Ri ∪Rj = {x|x ∈ Ri ∨ x ∈ Rj} ≃ Ri ≃ Rj .

Note, nonetheless, that the result of the operator ∪ is di�erent in set-based relations than in bag-based
relations.

Example 1.2. An example of the operator ∪:

A B
1 2
3 4
5 6

⋃ A B
3 4
1 5

 =

set−based
A B
1 2
3 4
5 6
1 5

,
bag−based
A B
1 2
3 4
5 6
1 5
3 4

7

1.1 The extended relational algebra 1 RELATIONAL ALGEBRA

The intersection of two relations with the same schema returns another relation with the same schema
and all tuples in both of the two input relations: Let Ri, Rj ∈ Σ such that Ri ≃ Rj , then

Ri ∩Rj = {x|x ∈ Ri ∧ x ∈ Rj} ≃ Ri ≃ Rj .

Example 1.3. An example of the operator ∩:
A B
1 2
3 4
5 6

⋂ A B
3 4
1 5

 =

[
A B
3 4

]
.

The di�erence of two relations with the same schema returns another relation with the same schema and
all tuples in the �rst input relations which don't appear in the second input relation: Let Ri, Rj ∈ Σ such that
Ri ≃ Rj , then

Ri −Rj = {x|x ∈ Ri ∧ x /∈ Rj} ≃ Ri ≃ Rj .

Example 1.4. An example of the operator −:
A B
1 2
3 4
5 6

−
 A B

3 4
1 5

 =

 A B
1 2
5 6

 .

The selection operator applies a condition on the values of the tuples of the input relation and returns only
those tuples that full�l the condition: Let R ∈ Σ and P a condition, then

σP (R) = {x|x ∈ R ∧ P (R) == true} .

Example 1.5. An example of the operator σP :

σA≥3

A B
1 2
3 4
5 6

 =

 A B
3 4
5 6

 .

In this case, the condition P is: 'the value of A is bigger than or equal than 3 '.

The projection operator returns all tuples of the input relation, but deleting all unspeci�ed attributes: Let
R ∈ Σ and Aj1 , ..., Ajk ∈ [A1, ..., An] ∼ R, then

ΠAj1
,...,Ajk

(R) = R
′

[Aj1
,...,Ajk]

= {y|∃x ∈ R s.t. x (Aj1 , ..., Ajk) = y} .

The result of this operation also depends on the type of relations used.

Example 1.6. An example of the operator Π[Aj1
,...,Ajk]

:

ΠA,C

A B C D
1 2 3 5
3 4 3 6
5 6 5 9
1 6 3 5

 =

set−based
A C
1 3
3 3
5 5

,
bag−based
A C
1 3
3 3
5 5
1 3

.

The cartesian product of two relations with disjoint schemas returns a relation with the schema resulting
of combining both schemas and with all possible tuples made out of tuples from the �rst relation and tuples
from the second relation: Let Ri, Rj ∈ Σ such that their schemas are disjoint, then

Ri ×Rj = {z = (x, y) |x ∈ Ri ∧ y ∈ Rj} .

8

1.1 The extended relational algebra 1 RELATIONAL ALGEBRA

Example 1.7. An example of the operator ×:

 A B
1 2
3 4

×

C D
2 6
3 7
4 9

 =

A B C D
1 2 2 6
1 2 3 7
1 2 4 9
3 4 2 6
3 4 3 7
3 4 4 9

.

The natural join of two tuples whose schemas share at most one attribute returns a relation with the
schema resulting of combining both schemas and with all possible tuples made out of tuples from the �rst
relation and tuples from the second relation with the condition that they have the same value for the shared
attribute: Let Ri, Rj ∈ Σ such that their schemas share at most one attribute, A, then

Ri ▷◁ Rj = {z = (x, y) |x ∈ Ri ∧ y ∈ Rj ∧ x (A) = y (A)} .

Note that if the relations are disjoint, the natural join gives the same results as the cartesian product.

Example 1.8. An example of the operator ▷◁:

 A B
1 2
3 4

 ▷◁

B D
2 6
3 7
4 9

 =

 A B D
1 2 6
3 4 9

 .

The theta join of two relations given a condition P returns all the tuples in the cartesian product of the
two relations that full�l the condition P : Let Ri, Rj ∈ Σ and P a condition, then

Ri ▷◁P Rj = {x|x ∈ Ri ×Rj ∧ P (x) == true} = σP (Ri ×Rj) .

Example 1.9. An example of the operator ▷◁P : A B
1 2
3 4

 ▷◁B=C

C D
2 6
3 7
4 9

 =

 A B C D
1 2 2 6
3 4 4 9

 .

The left/right/full outer join operators are similar to the theta join, but for those tuples in the left-
/right/both relation that does not �nd a match in the other relation, it returns a new tuples with the values of
the tuple and the rest of the attributes empty.

Example 1.10. An example of =▷◁, ▷◁=,=▷◁=:
A B
1 2
3 4
5 5

 =▷◁B=C

C D
2 6
3 7
4 9

 =

A B C D
1 2 2 6
3 4 4 9
5 5

A B
1 2
3 4
5 5

 ▷◁=B=C

C D
2 6
3 7
4 9

 =

A B C D
1 2 2 6
3 4 4 9

3 7

A B
1 2
3 4
5 5

 =▷◁=B=C

C D
2 6
3 7
4 9

 =

A B C D
1 2 2 6
3 4 4 9
5 5

3 7

9

1.2 Relational algebra expressions 1 RELATIONAL ALGEBRA

The renaming operator changes the name of a relation, ρ (R) = R′. The feature rename operator
changes the name of an attribute in a relation, A→ A′.

The aggregation operator of a relation returns another relation in which the tuples that share the value
of the aggregating attribute are merged using an aggregate function: Let R ∈ Σ, with R ∼ [A1, ..., An, A], A
the aggregating attribute and f1, ..., fn the aggregating functions for the rest of the attributes, then

γA,f1(A1),...,fn(An) (R) = {z = (vA, f1 (A
vA
1) , ...fn (A

vA
n)) |vA ∈ R (A)} ,

where AvA
j is a short notation for

AvA
j = ΠAj (σA=vA

(R)) ,

i.e. all values in R
(
AvA

j

)
such that come from a tuple whose values for the attribute A is v.

Example 1.11. An example of the operator γA,f1(A1),...,fn(An)(R):

γA,min(B)

A B
1 2
1 1
3 7
3 9
4 4

 =

A min (B)
1 1
3 7
4 4

 .

1.2 Relational algebra expressions

Now, we can build expressions in relational algebra to get new relations from current ones. Let's return to
Example 1.1, we can de�ne the operator Op such that produces the relation that contains all names of �lms in
which some movie stars in MovieStar born in 1960 participated as:

R′ = Op (MovieStar, StarsIn) = ΠfilmName (σbirthDate.year=1960 (MovieStar ▷◁name=starName StarsIn)) .

Relational algebra is the theoretical basis of the SQL language, meaning SQL is designed as an implemen-
tation of the relational algebra operators that we have seen so far. The equivalent SQL sentence to the last RA
operator, OP , is

SELECT filmName
FROM Star s In
JOIN MovieStar ON name=starName
WHERE birthDate . year = 1960 ;

As explained in [4], translating an arbitrary SQL query into a logical query plan, or, equivalently, a
relational algebra expression, is a complex task. Let's �rst give some examples.

Example 1.12. We are going to work with some examples now. Let's our database have the following relations:

� Movie(title: string, year: int, length: int, genre: string, studioName: string, producerCERT: int)

� MovieStar(name: string, address: string, gender: char, birthdate:date)

� StarsIn(movieTitle: string, movieYear: string, starName: string)

� MovieExec(name: string, address: string, CERT: int, netWorth: int)

� Studio(name: string, address: string, presCERT: int)

SQL:

SELECT movieTit le , count (S . starName) AS numStars
FROM Star s In S , MovieStar M
WHERE S . starName = M. name
GROUP BY movieTit le ;

10

2 TRANSLATING SQL INTO RELATIONAL ALGEBRA

RA:

γM.movieT itle, count(S.starName)→numStars (ρS (StarsIn) ▷◁S.starName=M.name ρM (MovieStar)) .

SQL:

SELECT movieTit le , count (S . starName) AS numStars
FROM Star s In S , MovieStar M
WHERE S . starName = M. name
GROUP BY movieTit le
HAVING count (S . starName) > 5 ;

RA:

σnumStars>5

(
γM.movieT itle, count(S.starName)→numStars (ρS (StarsIn) ▷◁S.starName=M.name ρM (MovieStar))

)
.

At this point, one can understand that it is not easy at all to automatize this procedure of translating from
SQL to RA. Not only the process is not trivial as is, but it is also needed to take into consideration that one
SQL sentence can be translated into several equivalent RA expressions, which will ultimately be executed in a
computer and the election of the translation to execute will a�ect the e�ciency of the program. Let's review
the paper [4], explaining each of the translations, assuming set-based relations.

2 Translating SQL into Relational Algebra

2.1 SELECT-FROM-WHERE statemets without subqueries

A query of the form:

SELECT s e l e c t= l i s t
FROM R1 T1 , . . . , Rn Tn
WHERE cond i t i on ;

in which the condition does not involve subqueries, we can translate it as

Πselect−list (σcondition (ρT1 (R1)× ...× ρTn (Rn))) .

2.2 Normalizing WHERE-subqueries into EXISTS and NOT EXISTS form

In general, queries in which there are subqueries in the WHERE clause can arise, and they need to be translated,
too. The property used in these cases is that subqueries occurring in the WHERE clause that use the operators
=, <,>,<=, >=, <>,EXISTS, IN,NOT EXISTS,NOT IN or the quanti�ers ANY or ALL can all be
rewritten to use the operators EXISTS and NOT EXISTS.

Proposition 2.1. All conditions using a subquery can be rewritten using only EXISTS and
NOT EXISTS.

Proof. Let's proof some of the results:

� The result using the EXISTS and NOT EXISTS operators is obvious.

� Case = ANY : a query would look like the following:

SELECT s e l e c t= l i s t
FROM R1
WHERE R1 .A = ANY (SELECT B

FROM R2
WHERE cond) ;

An equivalent query is:

11

2.2 Normalizing WHERE-subqueries into EXISTS and NOT EXISTS form2 TRANSLATING SQL INTO RELATIONAL ALGEBRA

SELECT s e l e c t= l i s t
FROM R1
WHERE EXISTS(SELECT B

FROM R2
WHERE cond AND R2 .B = R1 .A) ;

� Case = ALL:

SELECT s e l e c t= l i s t
FROM R1
WHERE R1 .A = ALL (SELECT B

FROM R2
WHERE cond) ;

An equivalent query is:

SELECT s e l e c t= l i s t
FROM R1
WHERE NOT EXISTS(SELECT B

FROM R2
WHERE cond AND R2 .B <> R1 .A) ;

The rest of the cases binaryOP +ANY |ALL is similar.

� Case IN :

SELECT s e l e c t= l i s t
FROM R1
WHERE R1 .A IN (SELECT B

FROM R2
WHERE cond) ;

An equivalent query is:

SELECT s e l e c t= l i s t
FROM R1
WHERE EXISTS(SELECT B

FROM R2
WHERE cond AND R2 .B = R1 .A) ;

The case NOT IN is analogous.

Example 2.1. Let's see some examples from the paper:
The query

SELECT movieTit le FROM Star s In
WHERE starName IN (SELECT name

FROM MovieStar
WHERE bi r thdat e = 1960) ;

is equivalent to:

SELECT movieTit le FROM Star s In
WHERE EXISTS (SELECT name

FROM MovieStar
WHERE bi r thdat e = 1960 AND name = starName) ;

The query

SELECT name FROM MovieExec
WHERE netWorth >= ALL (SELECT E. networth

FROM MovieExec E) ;

12

2.3 Translating SELECT-FROM-WHERE subqueries2 TRANSLATING SQL INTO RELATIONAL ALGEBRA

is equivalent to:

SELECT name FROM MovieExec
WHERE NOT EXISTS (SELECT E. networth

FROM MovieExec E
WHERE netWorth < E. netWorth) ;

Without loss of generality, we can now assume that all subqueries in the where clause are of the form
EXISTS or NOT EXISTS.

Now, to translate a query with subqueries, in which an arbitrary number of subqueries inside the subqueries
may arise, it seems logical to proceed recursively. The idea is to translate into RA from inner queries to outer
queries. For subqueries that do not contain more subqueries, we could translate them as in Section 2.1. The
problem in this case is that the subqueries can refer to attributes of relations appearing in the FROM clause of
the outer queries. This is known as correlated queries.

Example 2.2. A correlated query.

SELECT movieTit le
FROM Star s In
WHERE EXISTS (SELECT name

FROM MovieStar
WHERE bi r thdat e = 1960 AND name = starName) ;

The outer relations from which a correlated subquery uses certain attributes are called context relations.
The attributes of the context relations are the parameters of the subquery1.

2.3 Translating SELECT-FROM-WHERE subqueries

To translate a SELECT-FROM-WHERE statement that is used as a subquery, we must make the following
modi�cations to the method from Section 2.1:

� We must add all context relations to the cartesian product of the relations in the FROM list.

� We must add all parameters as attributes to the projection π.

Example 2.3. The subquery from Example 2.2:

SELECT name
FROM MovieStar
WHERE bi r thdat e = 1960 AND name = starName

is translated into

ΠmovieT itle,movieY ear,starName,name (σbirthdate=1960 ∧ name=starName (StarsIn×MovieStar)) .

2.4 De-correlation of subqueries appearing in a conjunctive WHERE condition

Now, let's focus on a particular case:
Suppose we have a query of the general form:

SELECT Se l ec t= l i s t
FROM from= l i s t
WHERE cond i t i on ;

And the following assumption: the condition is a conjunction (AND) of SELECT-FROM-WHERE sub-
queries, possibly with an additional condition that does not contain subqueries, i.e., the condition is of the
form

ϕ AND EXISTS(Q1) AND EXISTS (Q2) AND... AND NOT EXISTS (P1) AND...

where ϕ denotes the subquery-free condition and Q1, ..., Qn, P1, ..., Pm are select statements. The translation is
done in four steps:

1Note that not all the parameters must appear in the subquery.

13

2.4 De-correlation of subqueries appearing in a conjunctive WHERE condition2 TRANSLATING SQL INTO RELATIONAL ALGEBRA

1. Translate ϕ.

2. De-correlate the EXISTS subqueries.

3. De-correlate the NOT EXISTS subqueries.

4. Apply the projection ΠSelect−list.

2.4.1 Translating ϕ

It is translated using the method of Section 2.1, but the following context relations must be included:

� All context relations for which parameters occur in ϕ.

� All context relations for which parameters only occur in NOT EXISTS subqueries.

We will obtain a expression of the form
σϕ (E) ,

where E is a cartesian product of all the context relations involved. From now on, we are going to adapt and
re�ne E gradually when de-correlating the subqueries.

Example 2.4. Consider the following query, with relations R (A,B) and S (C):

SELECT R1 .A, R1 .B
FROM R R1 , S
WHERE EXISTS

(SELECT R2 .A, R2 .B
FROM R R2
WHERE R2 .A = R1 .B AND EXISTS

(SELECT R3 .A, R3 .B
FROM R R3
WHERE R3 .A = R2 .B AND R3 .B = S .C)) ;

Let's denote the queries, from outer to inner: Q1, Q2 and Q3. Q1 does not have a subquery-free part, so we
continue with Q2. The subquery-free part of Q2 is:

SELECT *

FROM R R2
WHERE R2 .A = R1 .B;

So it can be translated as
σR2.A=R1.B (ρR2 (R)× ρR1 (R)) .

Note that S is a context relation for this subquery-free part, but no parameter from it is needed and it is not
only used in NOT EXISTS clauses, so it is not added.

2.4.2 De-correlating EXISTS subqueries

After translating the subquery-free part, we translate all the subqueries EXISTS (Qi) as explained in Section
2.3, obtaining an algebra expression EQi

.
Let A1, ..., Ap be the list of parameters of context relations of Qi. We can translate EXISTS (Qi) by joining

E with the space of parameters for EQi
, namely ΠA1,...,Ap

(EQi
) :

E := E ▷◁ πA1,...,Ap
(EQi

) .

Example 2.5. Let's continue the translation of Q2 from Example 2.4. Now, we have to translate Q3 as:

σR3.A=R2.B ∧ R3.B=S.C (ρR3 (R)× ρR2 (R)× S) .

At this point, we have
E = ρR2

(R)× ρR1
(R) ,

EQ3 = σR3.A=R2.B ∧ R3.B=S.C (ρR3 (R)× ρR2 (R)× S) ,

14

2.5 Flattening subqueries in bag-based relations 2 TRANSLATING SQL INTO RELATIONAL ALGEBRA

and by joining E and EQ3
on the parameters of Q3 we ensure that we are taking the correct tuples from E

and EQ3
. In particular, we are taking the tuples in R1 for which tuples in R2, R3 and S exist that satisfy the

requirements of Q2:

ρR2 (R)× ρR1 (R) ▷◁ ΠR2.A,R2.B,S.C (σR3.A=R2.B ∧ R3.B=S.C (ρR3 (R)× ρR2 (R)× S)) .

Note that this expression can be simpli�ed:

E := ρR1 (R) ▷◁ ΠR2.A,R2.B,S.C (σR3.A=R2.B ∧ R3.B=S.C (ρR3 (R)× ρR2 (R)× S)) ,

because we are joining R2 with a subset of itself, so we will obtain the entire subset.

Remark 2.1. This simpli�cation can always be done. Before joining with ΠA1,...,Ap (EQi) , we can remove from
E all context relations for Qi, because they are already present in the parameter space. This way, denoting by
Ê the adapted E, we can change what we explained later for

E := Ê ▷◁ ΠA1,...,Ap
(EQi

) .

Example 2.6. Now we can translate Q2 as follows:

E2 := σR2.A=R1.B (E) =

σR2.A=R1.B (ρR1
(R) ▷◁ ΠR2.A,R2.B,S.C (σR3.A=R2.B ∧ R3.B=S.C (ρR3 (R)× ρR2 (R)× S))) .

Notice how R2 has been removed from the cartesian product of the subquery-free part of Q2 that we translated
in the �rst of the examples.

Finally, the translation of the entire Q1 is

ΠR1.A,R1.B (E2) ,

where ρR1
(R) and S have been removed from the cartesian product originating from the translation of the

subquery-free part of Q1 (the FROM clause).

2.4.3 De-correlating NOT EXISTS subqueries

Now we can de-correlate the NOT EXISTS (Pj) subqueries. We start translating Pj into a RA expression
EPj . Again, we consider the parameters A1, ..., Ap of the context relations of Pj . The di�erence now is that we
don't join E and EPj

, but we perform an anti-join:

E := E▷◁ΠA1,...,Ap

(
EPj

)
,

where
R▷◁S = R− (R ▷◁ S) .

In this anti-join, it necessary that R contains all attributes of S, and this is the reason why it is needed to add
all context relations appearing only in NOT EXISTS clauses to the cartesian product of the subquery-free part
of the query.

2.4.4 Translating the Select-list

Finally, we apply the projection ΠSelect−list.

2.5 Flattening subqueries in bag-based relations

Until now, we have supposed that all relations involved are set-based, but this is not the case in real databases,
where duplicates can occur. In this case, the requirements for �attening into a normal join are:

� There is a uniqueness condition that ensures that the subquery does not introduce any duplicates if it is
�attened into the outer query block.

� Each table in the subquery's FROM list (after any view, derived table, or subquery �attening) must be a
base table.

15

2.5 Flattening subqueries in bag-based relations 2 TRANSLATING SQL INTO RELATIONAL ALGEBRA

� The subquery is not under an OR.

� The subquery is not in the SELECT list of the outer query block.

� The subquery type is EXISTS, IN, or ANY, or it is an expression subquery on the right side of a comparison
operator.

� There are no aggregates in the SELECT list of the subquery.

� The subquery does not have a GROUP BY clause.

� The subquery does not have an ORDER BY, result o�set, or fetch �rst clause.

� If there is a WHERE clause in the subquery, there is at least one table in the subquery whose columns
are in equality predicates with expressions that do not include any column references from the subquery
block. These columns must be a superset of the key columns for any unique index on the table. For
all other tables in the subquery, the columns in equality predicates with expressions that do not include
columns from the same table are a superset of the unique columns for any unique index on the table.

16

3 SYSTEM-R

Part II

Query Optimization

3 System-R

In this section, we are going to explain System R, which is a pioneering SQL system developed by IBM Research
and which was released in 1976, with an accompanying paper, [1].

System R was an experimental prototype database management system, with complete capability, including
application programming, query capability, conccurent access support, system recovery, etc.

3.1 Architecture Components

System R is composed by several parts:

� Relational Storage Interface (RSI): internal interface which handles access to single tuples of base
relations.

� Relational Storage System (RSS): the supporting system of the RSI. It is a complete storage subsys-
tem in the sense that it manages devices, space allocation, deadlock detection,... It maintain indexes on
selected �elds of base relations, and pointer chains across relations.

� Relational Data Interface (RDI): the external interface that can be called directly from a programming
language. The SQL language is embedded within the RDI, and is used as the basis for all data de�nition
and manipulation.

� Relational Data System (RDS): supports the RDI, provides authorization, integrity enforcement and
support for alternative views of data. The RDS contains an optimizer which plans the execution of each
RDI command, choosing a low cost access path to data from among those provided by the RSS. The
RDS also maintains a set of catalog relations which describe the other relations, views, images, links,
assertions, and triggers known to the system.

A logical diagram of this architecture is depicted in Figure 1.

Figure 1: Architecture of System R

3.2 Query language

3.2.1 Data manipulation

The RDI interfaces SQL to a host programming language by means of a concept called a cursor, which is a
name used at the RDI to identify a set of tuples called its active set, and to maintain a position on one tuple
of the set. The cursor is associted with a set of tuples by means of the RDI operator SEQUEL; the tuples may

17

3.2 Query language 3 SYSTEM-R

EMP

NAME SAL JOB
�John� 1000 �CEO�
�Mike� 800 �PROGRAMMER�
�Sarah� 810 �PROGRAMMER�

Active Set

NAME SAL
�Mike� 800
�Sarah� 810

Figure 2: Result of the program. Stored data in EMP (left). Active Set (right).

then be retrieved, one at a time, by the RDI operator FETCH. The program must �rst give the system the
addresses of the program variables to be used by means of the RDI operator BIND.

Example 3.1. Here, the host program identi�es variables X and Y to the system and then issues a query whose
results are to be placed in these variables:

CALL BIND('X ' , ADDR(X)) ;
CALL BIND('Y ' , ADDR(Y)) ;
CALL SEQUEL(C1 , 'SELECT NAME:X, SAL:Y

FROM EMP
WHERE JOB = "PROGRAMMER" ') ;

CALL FETCH(C1) ;

The SEQUEL operator is associating the cursor C1 with the set of tuples which satisfy the query and
positioning it just before the �rst such tuple. The optimizer is invoked to choose an access path whereby the
tuples may be materialized, but no tuples are actually materialized in response to the SEQUEL call. The
materialization is done as they are called for, one at a time, by the FETCH operator. Each call to FETCH
deliver the next tuple of the active set into program variables X and Y. In Figure 2 we can see an example of
the stored data in the relation EMP and the resulting Active Set. In this case, after calling FETCH(C1), the
values of the variables would be X=�Mike� and Y=800. If another call to FECTH(C1) were made, then the
variables would be overrided to X=�Sarah� and Y=810.

TheDESCRIBE operator returns the degree and the data types of the active set. The degree is the number
of attributes. It is useful when this information is not known in advanced, so it can be inputted to the FETCH
operator.

The operator OPEN is used to associate a cursor with an entire relation.
Each cursor remains active until an RDI operator CLOSE or KEEP is issued on it. CLOSE deactivates

the cursor, while KEEP causes the tuples identi�ed by a cursor to be copied to form a new permanent relation
in the database.

The operator FETCH_HOLD is as FETCH, but it also acquires a hold on the tuple returned, which
prevents other users from updating or deleting it until it is explicitly released by the RELEASE operator or
until the holding transaction has ended.

3.2.2 Data de�nition

The SQL statement CREATE TABLE is used to create a new base relation. For each �eld, the �eld name
and data type are speci�ed. When a relation is no longer useful, it may be deleted by issuing a DROP TABLE
statement.

Access paths include images and binary links. Images are value orderings maintained on base relations by
the RSS, using multilevel index structures2, associating a value with one or more tuple identi�ers (TIDs),
which are internal addresses allowing rapid access to a tuple. One image per relation can have the clustering
property, which causes tuples whose sort �eld values are close to be physically stored near each other. Binary
paths are access paths in the RSS which link tuples in one relation to related tuples of another relation through
pointer chains. They are employed in a value dependent manner: the user speci�es that each tuple of Relation
1 is to be linked to the tuples in Relation 2 which have matching values in some �eld/s, and that the tuples on
the link are to be ordered in some way3. A link may be declared to have the clustering property.

2Images are today called just indexes.
3So, binary paths are essentialy join indexes.

18

3.3 Catalogues 3 SYSTEM-R

A view is a relation derived from one or more relations, and can be used in the same way as a base table.
It can be de�ned using the DEFINE VIEW statement. Views are updated automatically when changes are
made to the base tables on which they are de�ned. When the statement DROP VIEW is issued, the indicated
view and all other views de�ned in terms of it disappear from the system. Modi�cations to views are only
allowed if the tuples of the view are associated one-to-one with tuples of an underlying base relation.

The statement KEEP TABLE causes a temporary table to become permanent.
The statement EXPAND TABLE is used to add a new �eld to an existing table.

3.2.3 Data Control

A transaction is a series of RDI calls which the user wishes to be processed as an atomic act. A transaction
starts when the user issues a BEGIN_TRANS statement and ends when END_TRANS is called. Save
points may be speci�ed by means of the operator SAVE. When a transaction is active, the user may go back
to the beginning of it, or to any save point using RESTORE.

Regarding authorization, System R does not require a particular individual to be the DB administrator,
but allows each user to create his own data objects by executing the create staatements. The creator of an
object has full authorization on it. The user can gran selected capabilities for his objects to other users with
the statement GRANT.

About integrity assertions, any SQL predicate may be stated as an assertion about the integrity of data
in a base table or view. When an assertion is made by an ASSERT statement, its truth is checked. If true,
the assertion is atuomatically enforced until it is explicitly dropped by a DROP ASSERTION statement.
Assertions may describe the permissible states of the database or the permissible transitions in the database.
For this latter purpose, the keywords OLD and NEW are used in SQL to denote data values before and after
modi�cation.

If an assertion is IMMEDIATE, it cannot be suspended within a transaction, but is enforced after each
data modi�cation. Also, integrity points may be established by the SQL ENFORCE INTEGRITY.

Triggers are a generalization of the concept of assertion, causing a prespeci�ed sequence of SQL statements
to be executed when some triggering event occurs.

3.3 Catalogues

Catalogues are maintained by the RDS, and they describe the information of the relations, views, images, links,
assertions and triggers known to the system. Each user may access a set of views of the system catalogs which
contain information pertinent to him. Users cannot modify a catalog directly, but it is modi�ed indirectly, when
tables are created, an image is dropped, etc. A user can enter commments into his various catalog entries by
means of the COMMENT statement.

3.4 Cursors

As we have seen, cursors are pointers to speci�c tuples on a resulting table from a query. They can be used
to retrieve the values of the tuples individually or to store the tables into the database as permanent relations.
Cursors are still used, although they are often a low level feature that is not directly used by users, by it is used
by the DBMS to provide higher level features to the user.

In addition, SQL can be used to maniputale either one tuple at a time or a set of tuples with a single
command. The current tuple of a particular cursor may be selected for some operation using the predicate
CURRENT TUPLE OF CURSOR.

Example 3.2. Give a 10% raise to all employees in Dept. 50.

CALL SEQUEL('UPDATE EMP
SET SAL = SAL*1 .1
WHERE DNO = 50 ') ;

Example 3.3. Individual update.

CALL BIND('NEWSAL' , ADDR(NEWSAL)) ;
CALL SEQUEL('UPDATE EMP

SET SAL=NEWSAL
WHERE CURRENT TUPLE OF CURSOR C ') ;

19

3.5 Clustering images 3 SYSTEM-R

3.5 Clustering images

Clustering images, as we have explained, are images (indexes) that can be used to physically store the data in
the same order as it is indexed. At most one image per relation can have the clustering property. The reason
is simple: it is not possible to store the same data physically in two di�erent orders.

3.6 Optimizer

The objective of the optimizer is to �nd a low cost means of executing a SQL statement, given the data structures
and access paths available. For this, it attempts to minimize the expected number of pages to be fetches from
disk into the RSS bu�ers. The cost of CPU instructions is also taken into account by means of an adjustable
coe�cient, H, which is multiplied by the number of tuple comparison operations to convert equivalent page
accesses. H is useful to adjust the metric for compute-bounded systems or disk access-bounded systems.

The optimizers follows some steps when it receives a SQL statement:

1. Classify the SQL statement into one of several statement types.

2. Examine the system catalogs to �nd the set of images and links which are pertinent to the given statement.

3. A rough decision procedure is executed to �nd the set of reasonable methods of executing the statement.

4. If there is more than one reasonable method, the expected cost formula is evaluated for each method,
and the minimizing method is choosing.

The following parameters, available in the system catalogues, are taken into account:

R relation cardinality: number of tuples

D number of pages occupied by the relation

T average number of tuples per page:

T =
R

D
.

I image cardinality: number of distinct sort �elds values in a given image.

H coe�cient of CPU cost: 1
H is the number of tuple comparisons which are considered equivalent in cost

to one disk page access.

An image match a predicate if the sort �eld of the image is the �eld which is tested by the predicate.

3.6.1 Simple query optimization

In the case of a simple query on a single relation, the optimizer compares the available images with the predicates
of the query, in order to determine which of the following eight methods are available:

Method 1 : use a clustering image which matches a predicate whose comparison operator is '='. The expected cost,
C is

C =
R

T × I
,

that is: from I values, we want one, so we need to retrieve R
I tuples on average. These �t in R

T×I pages.

Method 2 : use a clustering image which matches a predicate whose comparison operator is not '='. Assuming half
the tuples satisfy the predicate, we have

C =
R

T × 2
.

The idea is the same as before, but now we are assuming to retrieve R
2 tuples on average.

Method 3 : use a non-clustering image which matches a predicate whose comparison operator is '='. In this case,
we have

C =
R

I
,

because now we might �nd only one correct tuple per page.

20

3.6 Optimizer 3 SYSTEM-R

Method 4 : use a non-clustering image which matches a predicate whose comparison operator is not '='. It is

C =
R

2
.

Method 5 : use a clustering image which does not match any predicate. We would scan the image and test each
tuple against all predicates. The expected cost is

C =
R

T
+H ×R×N,

where N is the number of predicates. So, we recover R tuples, distributed in R
T pages. In addition to this,

we need to perform R×N comparisons (N predicates per tuple), which are weighted by the coe�cient of
CPU, H.

Method 6 : use a non-clustering image which does not match any predicate:

C = R+H ×R×N.

Method 7 : use a relation scan, where this relation is the only one in its segment and test each tupple agains all
predicates:

C =
R

T
+H ×R×N.

Method 8 : use a relation scan, where there are other relations sharing the segment. The cost is unknown, but is
greater than R

T +H ×R×N .

The optimizer then chooses a method from this set, according to the following rules:

1. If Method 1 is available, it is chose.

2. If exactly one among Methods 2,3,5 and 7 are available, it is chosen. If more than one method is
available in this class, the expected cost formulas for these methods are evaluated and the method of
minimum cost is chosen.

3. If none of the above methods are available, the optimizer chooses Method 4, if available.

4. Else, Method 6, if available.

5. Else, Method 8.

3.6.2 Join query optimization

In the release paper, only 4 methods are explained, although they say the system takes more methods into
account.

Method 1 : use images on join �elds. A simultaneous scan of the image on R1.A and the image of R2.A. The idea
is having two pointers, and advance them coordinately, using the fact that images are ordered to �nd
matches.

Method 2 : sort both relations. R1 and R2 are ordered using their cluster images and two �les, F1 and F2 are
created. F1 and F2 are sorted on �eld A. The resulting sorted �les are scanned simultaneously and the
join is performed.

Method 3 : multiple passes. R1 is scanned, storing the pertinent �elds into a main memory data structure, W . If
space in main memory is available to insert a subtuple, S, it is inserted. If there is no space and S.A is
less than the current highest value of A in W , S is discarded. After completing the scan of R1, R2 is
scanned using its clustering image and a tuple S′ of R2 is obtained. Then, W is checked for the presence
of S′.A. If present, S′ is joined to the appropriate subtuple in W . This process continues until all tuples
of R2 have been examined. If any R1 subtuples were discarded, another scan of R1 is made to form a
new W consisting of subtuples with A value greater than the current highest. R2 is scanned again and
the process is repeated.

21

3.7 PostgreSQL in relation to System R 3 SYSTEM-R

Method 4 : the TID algorithm. Basically, it works as follows:

(a) Obtain the TIDs of tuples from R1 which satisfy additional restrictions to the join. Sort them and
store the TIDs in a �le F1. Do the same with R2, storing the TIDs in F2.

(b) Perform a simultaneous scan over the images on R1.A and R2.A, �nding the TID pairs of tuples
whose values for A match.

(c) Check each pair (TID1, T ID2) to see if TID1 is present in W1 and TID2 is present in W2. If they
are, the tuples are fetched and joined.

A method cannot be applied unless the appropriate access paths are available. The performance of a method
depends strongly on the clustering of the relations with respect to the access paths. In the paper, four situation
are presented in which the optimizer would decide between the four methods, but they claim to detail the cost
formulas on a later paper:

Situation 1 : there are clustering images on both R1.A and R2.A, but not no images on R1.B or R2.C, which are
additional conditions. Method 1 is always chosen.

Situation 2 : there are non-clustering images on R1.A and R2.A, but no images on R1.B or R2.C. Method 3 is
chosen if W �ts into the main memory bu�er at once. Otherwise, Method 2 is chosen.

Situation 3 : there are clustering images on R1.A and R2.A and non-clustering images on R1.B or R2.C. Method
4 is always chosen.

Situation 4 : there are non-clustering images on R1.A,R2.A,R1.B and R2.C. Method 3 is chosen if W �ts into the
main memory bu�er. Otherwise, Method 2 is chosen if more than one tuple per disk page is expected
to satisfy the restriction predicates. In other cases, Method 4 is chosen.

3.6.3 Optimized Packages

After analyzing a SQL statement, the optimizer produces an Optimized Package (OP) containing the parse
tree and a plan for executing the statement.

� If the statement is a query, the OP is used to materialize tuples as they are called for by the FECTH
command.

� If the statement is a view de�nition, the OP is stored in the form of a Pre-Optimized Package (POP),
which can be fetched and utilized whenever an access is made via the speci�ed view. If any change is
made to the structure of a base relation or to the access paths maintained on it, the POPs of all views
de�ned on that relation are invalidated, and each view must be reoptimized to form a new POP.

� When a view is accessed via the RDI operators OPEN and FETCH, the POP for the view can be used
directly to materialize the tuples of the view.

3.7 PostgreSQL in relation to System R

Here, we are going to examine how PostgreSQL is similar or di�erent to the characteristics of System R:

� Catalog: PostgreSQL also maintains a catalog, with similar information about the relations, indexes,
views,... of the system.

� Tuple Identi�er (TID): PostgreSQL also has the concept of TID, being it a pair (b, e), where b indicates
the disk block in which the tuple is stored, and e is the position where the tuple starts.

� Image / Clustering image: the concept of image is called just index in PostgreSQL, but they are
extended. PostgreSQL de�nes several types of indexes, and not all of them are ordered. For instance,
a Hash Index is an unordered index, but a BTree index is an ordered index, which would be the most
similar one to the concept of image in System R. PostgreSQL also allows to cluster, but the clustering
is made at one point in time, using a particular index: this means that subsequent insertions will not be
done to maintain the clustering property4.

4If one wishes to do this, the clustering would need to be redone.

22

4 QUERY OPTIMIZATION

� View: views in PostgreSQL are very similar to views in System R. They can be thought as a stored query,
very similar to what happens in System R. Views are automatically updated when the underlying tables
are updated. The di�erence comes when one tries to directly modify a view. PostgreSQL has the concept
of Updatable view, which are views that can be modi�ed with INSERT, UPDATE or DELETE. This
views are views that meet the conditions:

� The de�ning query of the view must have exactly one entry in the FROM clause, which can be a
table or another updatable view.

� The de�ning query must not contain one of the following clauses at the top level: GROUP BY,
HAVING, LIMIT, OFFSET, DISTINCT, WITH, UNION, INTERSECT, and EXCEPT.

� The selection list must not contain any window function , any set-returning function, or any aggregate
function such as SUM, COUNT, AVG, MIN, and MAX.

If one tries to modify a updatable view, the system will automatically generate the query that performs
the appropriate modi�cation in the base table. Note that there are some columns that are not modi�able:
if one tried to modify one of these columns, an error would be raised.

� Cost-based query optimization: PostgreSQL also has an optimizer that select the best execution plan
among several equivalent plans with the objective of minimizing the expected cost.

� Access path: access path specify the path chosen by the system to retrieve the requested tuples from
a relation. As we have seen so far, System R has basically �ve types of access paths: sequential scan,
images, binary paths, order-and-scan and TID-scan. PostgreSQL de�nes a wider variety of access path:
sequential scan, order-and-scan, TID-scan, hash indexes, BTree indexes, BitMap indexes,...

4 Query Optimization

As we have seen until now, there are alternative ways to evaluate a given query: there are equivalent RA
expression for the same query, and also there are di�erent methods that can physically execute a given query.

An evaluation plan de�nes exactly what algorithm is ued for each operation and how the execution of the
operations is coordinated.

4.1 Cost-based query optimization

Cost di�erence between evaluation plans for a query can be enormous. The general steps in cost-based query
optimization are as in System R:

1. Generate logically equivalent expressions using equivalence rules.

2. Annotate resultant expressions to get alternative query plans.

3. Choose the cheapest plan based on the estimated cost.

The estimation of the cost is based on:

� Statistical information about relations.

� Statistics estimation for intermediate result.

� Cost formulae for algorithms, computed using statistics.

4.2 Viewing query evaluation plans

Most database support the EXPLAIN <QUERY> statement, which displays the plan chosen by the opti-
mizer, along with the cost estimates that it uses for decision.

Some databases also support EXPLAIN ANALYSE <QUERY>, which shows actual runtime statistics
found by running the query, in addition to showing the plan.

Some databases show the cost as
f..l

where f is the cost of delivering the �rst tuple and l is the cost of delivering all results.

23

4.3 Generating equivalent expressions 4 QUERY OPTIMIZATION

4.3 Generating equivalent expressions

De�nition 4.1. Two relational algebra expressions are equivalent if the two expressions generate the
same set/bag of tuples on every legal database instance.
An equivalence rule between two expressions ensure that both expressions are equivalent.

Now, we are going to list some equivalence rules:

1. Conjunctive selection can be deconstructed into a sequence of individual selections:

σP1∧P2
(E) ≡ σP1

(σP2
(E)) .

2. Selection is commutative:
σP1

(σP2
(E)) ≡ σP2

(σP1
(E)) .

3. In a sequence of projections, where L1 ⊂ L2 ⊂ ... ⊂ Ln, only the outermost one is needed:

ΠL1 (πL2 (... (πLn (E)))) ≡ ΠL1 (E) .

4. Selections can be combined with cartesian products and theta joins:

σP (E1 × E2) ≡ E1 ▷◁P E2,

σP1
(E1 ▷◁P2

E2) ≡ E1 ▷◁P1∧P2
E2.

5. Theta join operations are commutative

E1 ▷◁ E2 ≡ E2 ▷◁ E1.

6. And they are associative, in a soft manner:

(a) The natural join is associative:

(E1 ▷◁ E2) ▷◁ E3 ≡ E1 ▷◁ (E2 ▷◁ E3) .

(b) The thetha join is associative in a soft sense:

(E1 ▷◁P1
E2) ▷◁P2∧P3

E3 ≡ E1 ▷◁P1∧P3
(E2 ▷◁P2

E3) ,

where P3 involves attributes that are present in the three relations.

When we can decide the order of the joins, we would choose the smaller join to be performed before, so
that we compute and store a smaller temporary relation.

7. The selection operation distributes over the theta join operation in the following two situations:

(a) When all the attributes in P0 involve only the attributes of one of the expressions being joined:

σP0 (E1 ▷◁P E2) ≡ σP0 (E1) ▷◁P E2.

(b) When P1 involves only the attributes of E1 and P2 involves only the attributes of E2:

σP1∧P2 (E1 ▷◁P E2) ≡ σP1 (E1) ▷◁P σP2 (E2) .

8. The projection operation distributes over the theta join operation as follows: If P involves only attributes
from L1 ∪ L2:

ΠL1∪L2
(E1 ▷◁P E2) ≡ ΠL1

(E1) ▷◁P ΠL2
(E2) .

Similar equivalences hold for outerjoin operations.

24

4.3 Generating equivalent expressions 4 QUERY OPTIMIZATION

9. Union and intersection are commutative:

E1 ∪ E2 ≡ E2 ∪ E1,

E1 ∩ E2 ≡ E2 ∩ E1.

10. Union and intersection are associative:

(E1 ∪ E2) ∪ E3 ≡ E1 ∪ (E2 ∪ E3) ,

(E1 ∩ E2) ∩ E3 ≡ E1 ∩ (E2 ∩ E3) .

11. The selection operation distributes over ∪,∩ and −:

σP (E1 ∪ E2) ≡ σP (E1) ∪ σP (E2) ,

σP (E1 ∩ E2) ≡ σP (E1) ∩ σP (E2) ,

σP (E1 − E2) ≡ σP (E1)− σP (E2) ,

σP (E1 ∩ E2) ≡ σP (E1) ∩ E2,

σP (E1 − E2) ≡ σP (E1)− E2.

12. The projection operation distributes over union:

ΠL (E1 ∪ E2) ≡ ΠL (E1) ∪ΠL (E2) .

Example 4.1. Pushing selections.
Query: �nd the names of all instructors in the Music department, along with the title of the courses that

they teach.
A �rst RA expression could be the following:

Πname,title

(
σdpt_name=′Music′

(
Instructor ▷◁

(
Teaches ▷◁ Πcourse_id,title (Course)

)))
.

It can be transformed using rule 7a:

Πname,title

((
σdpt_name=′Music′ (Instructor)

)
▷◁ (Teaches) ▷◁ Πcourse_id,title (Course)

)
.

The advantage of doing this is taht by performing the selection as early as possible we are reducing the size of
the relation to be joined.

Example 4.2. Pushing projections.
We start with the RA expression:

Πname,title

((
σdpt_name=′Music′ (Instructor) ▷◁ Teaches

)
▷◁ Πcourse_id,title (Course)

)
.

When we compute
σdpt_name=′Music′ (Instructor) ▷◁ Teaches,

we obtain a relation with schema (ID, name, dpt_name, salary, course_id, sec_id, semester, year). Equiva-
lence rule 8 allows to push projections, eeliminating unneeded attributes from intermediate results to get:

Πname,title

((
Πname,course_id

(
σdpt_name=′Music′ (Instructor) ▷◁ Teaches

))
▷◁ Πcourse_id,title (Course)

)
.

This is useful because performing the projection as early as possible reduces the size of the relation to be joined.
Note that course_id needs to be projected because it is needed for the join.

Example 4.3. Join ordering.
Consider the expression

Πname,title

((
σdpt_name=′Music′ (Instructor) ▷◁ Teaches

)
▷◁ Πcourse_id,title (Course)

)
.

In this case, we could compute
Teaches ▷◁ Πcourse_id,title (Course)

�rst, and then join the result with the left relation. The problem with this approach is that doing this join �rst
seems more likely to be large, as only a small fraction of the university's instructor are going to be from the
Music department. So it is better to leave the query as is.

25

4.4 Enumeration of equivalent expressions 4 QUERY OPTIMIZATION

4.4 Enumeration of equivalent expressions

Query optimizers use equivalence rules to systematically generate expressions equivalent to the given expression,
which is a �rst translation of the query.

All the equivalent expressions can be generated with the following approach:

REPEAT
APPLY a l l a pp l i c ab l e equ iva l ence r u l e s

ON every subexpre s s i on o f every equ iva l en t exp r e s s i on found so f a r
ADD newly generated exp r e s s i on s

TO the s e t o f equ iva l en t exp r e s s i on s
UNTIL no new equ iva l en t exp r e s s i on s are generated

4.5 Cost estimation

The optimizer takes into account the cost of each operator and the statistics of the input relations, such as
the number of tuples and the sizes of the tuples. Also, inputs can be results of sub-expressions, so we need to
estimate estatistics of these results. For this purpose, more statistics, such as the number of distinct values for
an attribute, are used.

4.6 Choice of execution plan

Once we have generated di�erent equivalent expressions, we need to decide which one to use to execute the
query and get the results. For this, we must consider the interaction of evaluation techniques, because choosing
the cheapest algorithm for each operation disregarding the others may not yield best overall algorithm. For
example, a merge-join may be costlier than a hash-join, but may provide a sorted output which could reduce
the cost for an outer level aggregation.

Practical query optimizers incorporate elements of two broad approaches:

1. Search all the plans and choose the best plan in a cost-based fashion.

2. Uses heuristics to choose a plan.

4.6.1 Best join-order problem

Problem: �nd the best join-order for
R1 ▷◁ R2 ▷◁ ... ▷◁ Rn.

A �rst idea could be to check all possibilities and choose the cheapest one. But...

Proposition 4.1. For the best join-order problem, with n relations involved, there are

(2 (n− 1))!

n− 1

di�erent possible join orders.

Proof. First, we need to count all possible orderings, i.e. the number of permutations, which is known to be
n!. Now, we have to count all possible ways to assign the n − 1 needed parenthesis. This is known to be the
Catalan number5

#()n−1 = Cn−1 =
(2 (n− 1))!

n! (n− 1)!
.

Thus, the total amount is

n! · Cn−1 = n!× (2 (n− 1))!

n! (n− 1)!
=

(2 (n− 1))!

(n− 1)!
.

This number is huge, and it is unfeasable to check the whole search space. Thus, a di�erent approach is
needed.

5See Catalan Numbers.

26

https://en.wikipedia.org/wiki/Catalan_number#Applications_in_combinatorics

4.6 Choice of execution plan 4 QUERY OPTIMIZATION

Algorithm 1 procedure �ndbestplan(S)

i f (bes tp lan [S] . c o s t != i n f t y)
return bes tp lan [S] 	

// else i t has not been computed yet
i f (S conta in s only 1 r e l a t i o n)

set bestp lan [S] . plan and bes tp lan [S] . c o s t
based on the best way to ac c e s s S

else for each non=empty proper subset S1 of S
P1 = f i ndbe s tp l an (S1)
P2 = f i ndbe s tp l an (S = S1)
A = best a lgor i thm for j o i n i n g P1 and P2
cos t = P1 . co s t + P2 . co s t + A. co s t

i f co s t < bestp lan [S] . c o s t
bes tp lan [S] . c o s t = cos t
bes tp lan [S] . plan = plan

return bes tp lan [S]

Dynamic programming approach

Using dynamic programming, the least-cost join for any subset of {R1, ..., Rn} is computed only once and stored
for future use. The algorithm works as follows:

� Consider all possible plans of the form
S1 ▷◁ (S − S1) ,

where S1 is any non-empty subset of S.

� Recursively compute costs for joinin subsets of S to �nd the cost of each plan. Choose the cheapest of
the 2n − 2 alternatives.

� Base case: single relation access plan.

� Apply all selections on Ri using best choice of indices on Ri.

� When the plan for any subset is computed, we store it and reuse it when it is required again, instead of
recomputing it.

The pseudocode is shown in Algorithm 1.
The time complexity of this algorithm is O (3n) and the space complexity is O (2n). This is a huge gain with

respect to checking the whole search space, but it is still a very high cost.

Left-deep join trees

In left-deep join trees, the right-hand-side input for each join is a relation, not the result of an intermediate
join. In Figure 3 we can see an example of what is a left-deep join tree, and what is not.

With this structure, we can reduce the cost of the optimization problem.
For a set of n relations, we can consider n alternatives with one relation as right-hand-side input and the

other relations as left-hand-side input.
The time complexity of �nding the best join order is in this case O (n2n) and the space complexity remains

the same.
At this points, one might think that it is of no use bothering with optimizing the order of queries, if it so

costful, but, in reality, typical queries have a small n, usually less than 10, and a good ordering can change a
query from being unfeasable to being executed in an acceptable time.

27

4.6 Choice of execution plan 4 QUERY OPTIMIZATION

▷◁

▷◁ R5

▷◁ R4

▷◁ R3

R1 R2

▷◁

▷◁ ▷◁

▷◁ R3 R4 R5

R1 R2

Figure 3: A left-deep join tree (top) and not a left-deep join tree (bottom).

Heuristic optimization

As we have seen, cost-based optimization is expensive, even using dynamic programming.
Heuristic optimization transforms the query-tree by using a set of rules that typically improve execution

performance. These rules can include:

� Perform selection early.

� Perform projection early.

� Peform most restrictive selection and join operations before other similar operations.

Some systems use only heuristics, while others combine the two approaches. A frequently used approach is the
following:

1. Heuristic rewriting of nested block structure and aggregation.

2. A cost-based join-order optimization for each block.

There is usually an optimization cost budget to stop optimization early if the cost of the plan is less than
the cost of the optimizations to be made.

Also, it can be useful to implement plan caching to reuse previouly computed plans if queries are resub-
mitted.

It is worth to note that even with the use of heuristics, cost-based query optimization imposes a substantial
overhead in the computations, but it is worthy for expensive queries. For this reason, optimizers often use
simple heristics for cheap queries, and perform a more exhaustive enumeration for more expensive queries.

28

5 STATISTICS FOR COST ESTIMATION

5 Statistics for cost estimation

Statistics of relations are of great importance for improving the performance of the system, because they allow
to estimate the cost more accurately.

Some statistical information that is used:

� nr the number of tuples in relation r,

� br the number of blocks containing tuples of r,

� lr the size of a tuple of r,

� fr the blocking factor, or the number of tuples that �t into one block. If the tuples of r are stored together
physically in a �le, then it is

br =

⌈
nr

fr

⌉
.

� V (A, r) the number of distinct values that appear in r for attribute A.

5.1 Histograms

Histograms are useful for cost estimation. Histogram can be of two types:

� Equi-width: the space is divided into M buckets of the same size.

� Equi-depth: the space is divided into M buckets, in such a way that all buckets have the same number
of tuples inside.

Many databases store the n most frequent values and their counts, and they construct histogram for the
remaining values. Usually, they are computed not on all the actual values, but on a sample of them.

This sampling approach make it possible for the statistics to be outdated, so they need to be recomputed:

� Some databases require a ANALYZE (VACUUM) command to be explicitly executed to update statistics.

� Others automatically perform the recomputation.

5.2 Estimation of selection size

We want to estimate the size of a selection, but this depends on the conditions to full�l:

� σA=v (r): a simple equality condition size is estimated as the size of the relation, divided by the number
of distinct values for attribute A:

C =
nr

V (A, r)
.

Nonetheless:

� If the attribute is a key attribute: the estimation is 1.

� If the value v is among the most frequent values of attribute A, we can give more accurate estimations.

� σA≤v (r): a simple inequality condition is more complex than before. Let c denote the estimated number
of tuples satisfying the condition. If m = min (A, r) and M = max (A, r) are available in the catalog then:

c =

{
0, if v < m ∨ v > M

nr
v−m
M−m , otherwise

So, we approximate by a linear interpolation over the total number of records. Note that if histograms
are available, this estimation can be re�ned by summing all buckets below v and interpolating only in the
bucket in which v lies.

When there is a lack of statistical information, c is assumed to be nr

2 .

29

5.3 Estimation of the size of joins 5 STATISTICS FOR COST ESTIMATION

For more complex conditions, we need a new de�nition:

De�nition 5.1. The selectivity of a condition P is the probability that a tuple in the relation r satis�es
P . If sP is the number of tuples satisfying the condition, then the selectivity is given by

SP =
sP
nr

.

� Conjunction, σP1∧...∧Pk
(r): assuming independence, we have

c = nr × SP1 × ...× SPk
= nr

sP1
· ... · sPk

nn
r

.

� Disjunction, σP1∨...∨Pk
(r): we do the following

Prob (A1 ∨ ... ∨Ak) = Prob
(
A1 ∨ ... ∨Ak

)
= Prob

(
A1 ∧ ... ∧Ak

)
= 1− Prob

(
A1 ∧ ... ∧Ak

)
,

which, assuming independence is equal to

1− Prob
(
A1

)
· ... · Prob

(
Ak

)
= 1− (1− Prob (A1)) · ... · (1− Prob (Ak)) .

So, it is

c = nr ×
[
1−

(
1− sP1

nr

)
· ... ·

(
1− sPk

nr

)]
.

� Negation, σ¬P (R): this is just

c = nr · (1− SP) = nr − nrSP = nr − sp.

5.3 Estimation of the size of joins

The cartesian product of two relations r1 and r2 contains exactly nr1 × nr2 tuples, and each tuple occupies
lr1 + lr2 bytes.

About the join:

� If r1 ∩ r2 = ∅, then r1 ▷◁ r2 is the same as r1 × r2.

� If r1 ∩ r2 is a key for r1, then a tuple of r2 will join with at most one tuple from r1, so the number of
tuples in r1 ▷◁ r2 is, at most, the number of tuples in r2.

� If r1 ∩ r2 is a foreign key in r2 referencing r1, then the number of tuples in r1 ▷◁ r2 is exactly the same as
the number of tuples in r2.

� If r1 ∩ r2 = {A} is not a key for r1 nor r2: let assume that every tuple t in r1 produces tuples in the join,
then the number of tuples in the join is estimated to be

c =
nr1 · nr2

V (A, r2)
,

i.e., the number of tuples in the cartesian product, divided by the number of di�erent values for the
attribute A in the second relation. This is because each value in r1 will join with more or less

nr2

V (A,r2)

values.

If we assume the reverse, i.e., every tuple in r2 produces tuples, then we get

c =
nr1 · nr2

V (A, r1)
,

for the same reason.

The lower of these two estimates is probably the most accurate one, so both are computed and the best
one is chosen.

This estimates can be improved using histograms, by using the same formula but on each bucket, and
summing them up.

30

5.3 Estimation of the size of joins 5 STATISTICS FOR COST ESTIMATION

Example 5.1. Estimating the size of a join.
Let perform

student ▷◁ takes

with the following information:

� nstudent = 5000, fstudent = 50 so bstudent =
5000
50 = 100.

� ntakes = 10000, ftakes = 25 so btakes =
10000
25 = 400.

� V (ID, takes) = 2500, so, on average, each student that has taken a course, has taken 4 courses.

� The attribute ID in takes is a foreign key referencing student, in which it is a primary key: V (ID, student) =
5000.

The most accurate estimation in this case is the one using the fact that ID is a foreign key, which implies that
the number of tuples is the same as the number of the referencing relation, takes, so

c = ntakes = 10000.

Let's nonetheless compute an estimate disregarding this:

c1 =
5000 · 10000

2500
= 20000,

c2 =
5000 · 10000

5000
= 10000.

We choose the lower estimate, c2, which in this case is the same as the one we chose before! But this is no
surprise, this will always happen with foreign keys, because V (A, r1) = nr1 if A is key, so we would have

c2 =
nr1 · nr2

nr1

= nr2 ,

which is the same value that we get using the other estimation. Also, V (A, r2) will be at most nr1 , because it
is a foreign key, so it cannot have more values than the referenced attribute!

31

6 CONVENTIONAL INDEXES

Part III

Indexing

6 Conventional indexes

De�nition 6.1. An index is a data structure that facilitates the recovering of data. The idea is to
maintain pointers to the speci�c directions where some data is stored.

As we know, the disk can be logically seen as a sequence of pages of a certain size. Every �le that we store
in a computer must be stored in one or more pages. Now, imagine we want to retrieve a �le's content. For
this, we need to fetch the data from where it is stored. If we don't use indexes, we would need to sequentially
traverse the disk until we �nd the desired �le.

Example 6.1. Imagine a simpli�ed setup with a disk of N pages and with �les that occupy one page. If we
need to recover a speci�c �le that is stored in memory, without further information, it would take an average
of N

2 pages to be fetched.

An index can be used to mitigate this impact. There are multiple types of indexes, but the simplest form
of an index is just a map in which each �le identi�er is associated to the direction of its �rst byte in memory.
This way, only knowing which �le we want to recover, we can access it directly using the index.

Example 6.2. In the previous setup, imagine we store an index in the �rst page. In this scenario, to recover a
speci�c �le we need to fetch the �rst page, look the index to get the direction of our �le, and directly fetch the
correct page. In total, we would fetch 2 pages.

De�nition 6.2. A dense index is an index that maintains one pointer per key.

Properties of dense indexes:

� If a key is not listed, the key does not exist.

� They can be used in sequential and non-sequential �les.

� Querying a dense index is more e�cient than querying a sequential �le because we will likely retrieve less
pages from disk to memory.

� They are usually ordered, so searchs can be done using the binary search algorithm.

Example 6.3. A dense index.
A dense index on a sequential �le looks like this:

32

6 CONVENTIONAL INDEXES

And on a non-sequential �le like this:

If we want to retrieve the segment with key=30, we would do binary search in the index and then we would
get the disk direction of this segment.

If we are asked to retrieve a segment with a key that is not in the index, we would directly return an error
after searching for it and not �nding it, because we are sure there is no segment with that key in the disk. For

33

6.1 Sparse second level index 6 CONVENTIONAL INDEXES

example, there is no segment with key 25, and so there is no entry in the index with key 25.

De�nition 6.3. A sparse index maintains a pointer per page/block. This means that only the �rst
key on the each block.

Properties of sparse index:

� They are also sorted, so binary search can be conducted to �nd the requested key. In this case, we are
looking for the biggest key that is less than the requested key. We then would go to the page where this
key is and scan sequentially until we reach the requested key or a key bigger than it, in which case we
would return an error.

� They need less space than dense indexes.

� Can only be used in sequential �les, because the basic idea for sparse indexes to work is that data is sorted
in the same way as the index.

Example 6.4. Sparse index.
A sparse index looks like this:

If we want to retrieve the segment with key=30, the procedure is exactly as with a dense index.
If we want to retrieve the segment with key=40, then we would search for 30 (the biggest key smaller than

40), we would go to where it is. Then, we would advance until we found the segment with key=40.
If we want to retrieve the segment with key=25, we would search for 10, we would go to where it is. Then,

we would advance until we reached the end of the page, and we would return an error, because now we are sure
there is no segment with key=25.

6.1 Sparse second level index

When an index becomes very big, the searchs start to slow down, because the binary search needs to be done
over a bigger index, which can even occupy several pages, which would need to be fetched.

When this happen, a possible way to speed up the search is to add a sparse index that points to the already
de�ned index.

34

6.2 How to deal with duplicate keys. 6 CONVENTIONAL INDEXES

Example 6.5. A second level sparse index.
In this diagram we can see a second level sparse index on a sparse index:

If we wanted to retrieve the segment with key=30, we would check the 2nd level sparse index, we would get
the page where the index should have this key stored. We would go to this page, and we would �nd the key=30
already in the index, so we would go to the indicated direction.

Question: does it make sense to use a second level dense index?
No, it would be a copy of the �rst level index, so we would not gain anything. Second level indexes are

sparse. Note, nonetheless, that the �rst level index can indeed be of any kind.
Question: what is the tradeo� between sparse and dense indexes?
Sparse indexes needs less space to be stored and this also allows to have a bigger part of the index in memory

when we need it. On the other hand, dense indexes can tell if any record exists without accessing the �les.

6.2 How to deal with duplicate keys.

Imagine we have a disk with the following data:

35

6.2 How to deal with duplicate keys. 6 CONVENTIONAL INDEXES

A naïve solution would be to just use a dense index, where all the keys are listed repeatedly:

In this case, we are solving the problem of duplicate keys... but we are probably using more space that we
wanted. It would be better to have unique keys in the indexes. Thus, a second approach could be to only store

36

6.2 How to deal with duplicate keys. 6 CONVENTIONAL INDEXES

the �rst appearance of each key, and use it to fetch the data, scanning sequentially until all records with the
same key have been retrieved. This is illustrated below:

See, nonetheless, that this solution requires that the �le is sequentially stored in memory, because when we
recover the second segment with key=10, in order to recover the third one, the only possible way is to continue
a sequential scan.

Now, a third approach is an intermediate approach: we can use a sparse index with duplicate keys, meaning
we index the �rst key in each page:

37

6.2 How to deal with duplicate keys. 6 CONVENTIONAL INDEXES

In this case, when we want to search for a key, we always need to go to the biggest key that is smaller than
the requested one, even if the requested one is in the index keyset. For example, if in the example above we
used the indexed direction for key=20, we would miss the �rst record of this key.

An improved version of this solution is to index only the �rst new key in each page:

38

6.3 How to delete records 6 CONVENTIONAL INDEXES

Note that in this case, all keys will be listed once, so we don't need to retrieve the �le for inexistent keys,
but sequentially ios required.

6.3 How to delete records

6.3.1 Deletion from sparse index with no duplicates

If we want to delete a record, we need to make sure that the index is updated if needed. The steps to delete a
record are the following:

1. To delete key K, do a binary search in the index.

2. Depending if K is in the index or not:

(a) If K is not in the index we visit the direction of the biggest key that is smaller than the requested
one. We advance until we �nd the record with key K and we delete it.

(b) If K is in the index, we visit its direction and we delete it. Now, two possibilities arise:

i. If there are more records in the same page, we shift them up, and we update the key.

ii. If there no more records in the same page, we delete the key from the index and we shift the rest
of the keys up.

Example 6.6. Case 2.(a): DELETE 40
Initial state Final state

Legend
Red Delete

Example 6.7. Case 2.(b).i.: DELETE 30
Initial state Second state Final state

Legend
Red Delete

Yellow Update

39

6.4 How to insert records 6 CONVENTIONAL INDEXES

Example 6.8. Case 2.(b).ii.: DELETE 30 and 40
Initial state Second state Final state

Legend
Red Delete

Yellow Update

6.3.2 Deletion from dense index

In this case, we will always �nd the keys to delete in the index, so the steps are easier:

1. To delete key K, do a binary search on the index.

2. Delete records in the corresponding page, shifting up the rest of the records to not leave holes.

3. Update all shifted records.

Example 6.9. Deletion from dense index: DELETE 30
Initial state Second state Final state

Legend
Red Delete

Yellow Update

6.4 How to insert records

We need to follow the next steps6:

1. We want to insert record with key K. First, we do a binary search to see where it should be located.

2. Now, in the �rst page that it can be located according to the index, two things can happen:

(a) If there is space for the record: we insert it.

(b) If there is not space for the record: we need to shift the following records down, updating the necessary
index entries.

6The steps are analogous for sparse and dense indexes.

40

6.5 Secondary indexes 6 CONVENTIONAL INDEXES

Example 6.10. INSERT 15
Initial state Second state Final state

Legend
Red Delete

Yellow Update
Green Insert

6.5 Secondary indexes

Imagine we have an unordered �le in memory, which we would like to be able to traverse in order without
implying great costs. If we try to do this by sequentially scanning the disk, we would need to fetch several times
each page and it would be highly inne�cient, so we could think on using indexes to solve this problem.

As we have seen, sparse indexes cannot be used with unordered �les (some records would be lost), so our
only option here is to use an ordered dense index that enables us to recover each record in the desired order.
Now, as we are indexing the whole �le with an dense index, it is likely that the index is huge, so it seems
convenient to add a second level sparse index to speed things up even more.

This is a secondary index:

De�nition 6.4. A secondary index is a N -level index structure, composed by a �rst-level dense index
and the rest of the levels are sparse. All this indexes are ordered to make use of binary search, in order
to be capable of recovering unsequentially stored records from disk e�ciently.

6.5.1 Duplicate values and secondary indexes

Again, duplicate keys pose a problem to secondary indexes. Think in the following setup:

41

6.5 Secondary indexes 6 CONVENTIONAL INDEXES

Here, the solutions that we proposed before don't work, because for them we needed sequentially stored
�les. In this case, again, the naïve solution is a dense index:

The problem with this solution is that this cause an excessive overhead, both in disk space (we are storing

42

6.5 Secondary indexes 6 CONVENTIONAL INDEXES

repeatedly the same keys) and in search time (because the index keyset needs to be accessed several times per
key). An alternative is to store only once each key, and associate a list of pointers:

But this has the problem that the index entries can have di�erent sizes, which di�cult the search.
Another idea is to use buckets of pointers:

43

7 B-TREES

This structure is very helpful in some situations, for example when we want to get data with some conditions
that involves di�erent �elds indexed.

Example 6.11. Imagine the relation EMP(name,dept,�oor), with a primary index on name and two secondary
indexes with bucket structure in dept and �oor.

Now, let's say we want to retrieve all employees in the department 'Toy' and in �oor 2. Our structure make
this query very easy:

As we can see, it is possible to use both indexes and then fetch only those records that are return by the
two of them!

7 B-Trees

This section is adapted from [2].
B-trees automatically maintain as many levels of index as is appropriate for the size of the �le being indexed

and manage the space on the blocks they use so that every block is between half used and completely full.

44

7.1 Lookup in BTree 7 B-TREES

Figure 4: A BTree. Source: [2].

A B-tree organizes its blocks into a tree that is balanced, meaning that all paths from the root to a leaf have
the same length. A BTree can be visualized in Figure 4.

There is a parameter n associated with each B-tree index, and this parameter determines the layout of all
blocks of the B-tree. Each block will have space for n search-key values and n+ 1 pointers.

We pick n to be as large as will allow n+ 1 pointers and n keys to �t in one block.

Example 7.1. Suppose our blocks are 4096 bytes. Also let keys be integers of 4 bytes and let pointers be 8
bytes. If there is no header information kept on the blocks, then we want to �nd the largest integer value of n
such that 4n+ 8(n+ 1) < 4096. That value is n = 340.

There are several important rules about what can appear in the blocks of a B-tree:

� The keys in leaf nodes are copies of keys from the data �le. These keys are distributed among the leaves
in sorted order, from left to right.

� At the root, there are at least two used pointers. All pointers point to B-tree blocks at the level below.

� At a leaf, the last pointer points to the next leaf block to the right, i.e., to the block with the next higher
keys. Among the other n pointers in a leaf block, at least

⌊
n+1
2

⌋
of these pointers are used and point to

data records; unused pointers are null and do not point anywhere. The ith pointer, if it is used, points to
a record with the ith key.

� At an interior node, all n+1 pointers can be used to point to B-tree blocks at the next lower level. At least⌈
n+1
2

⌉
of them are actually used (but if the node is the root, then we require only that at least 2 be used,

regardless of how large n is). If j pointers are used, then there will be j�1 keys, say K1,K2, ...,Kj−1.
The �rst pointer points to a part of the B-tree where some of the records with keys less than K1 will be
found. The second pointer goes to that part of the tree where all records with keys that are at least K1,
but less than K2 will be found, and so on. Finally, the jth pointer gets us to the part of the B-tree where
some of the records with keys greater than or equal to Kj−1 are found. Note that some records with
keys far below K1 or far above Kj−1 may not be reachable from this block at all, but will be reached via
another block at the same level.

� All used pointers and their keys appear at the beginning of the block, with the exception of the (n+ 1)
th

pointer in a leaf, which points to the next leaf.

In Figure 4, the chosen n is 3.

7.1 Lookup in BTree

Suppose we want to �nd a record with key K. The procedure is:

45

7.2 Range queries 7 B-TREES

� Base case: if we are at a leaf node, look among the keys. If the ith key is K, then the ith pointer is the
one that we were looking for.

� Inductive case: if we are at an interior node with keys K1, ...,Kn we �nd i such that Ki−1 ≤ K < Kn,
or 1 if K < K1. We choose the ith pointer to continue the search.

Example 7.2. Search K = 29.

The path to be followed is colored green:

1. In the root node, K1 < K and and there are no more keys, so choose i = 2.

2. In the next node, we �nd K1 < K < K2, so choose i = 2.

3. In the leave node, we �nd K2 = K, so choose i = 2.

7.2 Range queries

BTrees allow for a very e�cient way to process range queries, that is, recover all records with keys lying in a
given range [Kmin,Kmax]. The procedure is:

1. Perform a lookup for Kmin, whether it is found or not, we will reach the correct leaf node.

2. We traverse all leaf nodes until we �nd a key bigger than Kmax.

Example 7.3. Search for range [12, 40].

It is colored in green all the nodes that would be accepted into the range query. The order is up-down and
left-right in the leaf level.

46

7.3 Insertion into a BTree 7 B-TREES

7.3 Insertion into a BTree

The insertion is, in principle, recursive:

� We try to �nd a place for the new key in the appropriate leaf, and we put it there if there is room.

� If there is no room in the proper leaf, we split the leaf into two and divide the keys between the two new
nodes, so each is half full or just over half full.

� The splitting of nodes at one level appears to the level above as if a new key-pointer pair needs to be
inserted at that higher level. We may thus recursively apply this strategy to insert at the next level: if
there is room, insert it; if not, split the parent node and continue up the tree.

� As an exception, if we try to insert into the root, and there is no room, then we split the root into two
nodes and create a new root at the next higher level; the new root has the two nodes resulting from the
split as its children. Recall that no matter how large n (the number of slots for keys at a node) is, it is
always permissible for the root to have only one key and two children.

Example 7.4. Insert K = 40.
First, we lookup for the place where the record should be inserted.

As there is not enough place, we need to split the node.

Now, the key of the new node needs to be inserted into the parent node. But it is also full, so it needs to be
splitted, too.

47

7.4 Deletion from a BTree 7 B-TREES

ç
In the root node, the smaller key reachable from that node needs to bu inserted. In this case, the newly

inserted one.

7.4 Deletion from a BTree

The steps to delete record with key K are:

1. Lookup for the record.

2. Delete the record from the data.

3. Delete the key-pointer pair from the BTree.

4. If the node from which we deleted still has the minimum number of pointers, that's it. But it is possible
that the node is less occupy than the minimum required after the deletion. We need to do one of two
things:

(a) If one of the adjacent siblings of node N has more than the minimum number of keys and pointers,
then one key-pointer pair can be moved to N , keeping the order of keys intact. Possibly, the keys at
the parent of N must be adjusted to re�ect the new situation.

(b) The hard case is when neither adjacent sibling can be used to provide an extra key for N . However,
in that case, we have two adjacent nodes, N and a sibling M ; the latter has the minimum number
of keys and the former has fewer than the minimum. Therefore, together they have no more keys
and pointers than are allowed in a single node. We merge these two nodes, e�ectively deleting one
of them. We need to adjust the keys at the parent, and then delete a key and pointer at the parent.
If the parent is still full enough, then we are done. If not, then we recursively apply the deletion
algorithm at the parent. This process is called coalesce siblings.

Example 7.5. Delete K = 7.

48

7.4 Deletion from a BTree 7 B-TREES

First, we �nd the correct node and delete the record.
Now, the node left only has one pointer, so we need to �x this. As its left sibling node has 3 pointers, we

can transfer the biggest one.

Also, we need to update the parent node.

Example 7.6. Now, delete K = 11.

First, we locate the correct node and delete the record. Again, the node ends up with less pointers than it
should, but now the left sibling does not have more than the minimum amount of pointers (it has the minimum)
and the node does not have right siblings (the node to the right is from another parent), so we need to merge
the two siblings.

49

8 PHYSICAL QUERY PLANS

Part IV

Physical Query Plans

8 Physical Query Plans

We saw the steps to process a query: �rst, the query needs to be translated into and RA expression, which can
then be modi�ed using equivalence rules to get di�erent expressions that lead to the same result. Then, it is
needed to estimate the cost of each expression and to take the one that gives the minimum expected cost. For
this, we need also to decide between several ways to access the data, e.g., whether to use an index or not, to
order the data or not,... This is called physical query planning.

There are several ways to measure cost, but we are going to be using the number of disk blocks that must
be read or written to execute a query plan.

We will also use di�erent parameters:

� B (R): number of blocks containing the tuples of relation R.

� f (R): maximum number of tuples of R per block.

� S (R): size of tuples of R.

� M : memory blocks available.

� HT (i): amount of levels in index i.

� LB (i): amount of leaf nodes in index i.

8.1 Computing joins

A join operation can be computed in several ways, depending on the options available.
The simplest and most costly option is an iteration join, which just performs a double loop over the two

relations. The pseudocode can be read in Algorithm 2.

Algorithm 2 Iteration Join

for each r in R1 do
for each s in R2 do

i f r .A = s .A then
output (r , s)

Themerge join consists in �rst sorting the relations if they are not sorted, and then scanning them making
use of the fact that they are ordered using the same attribute. The pseudocode can be read in Algorithm 3.

50

8.2 Factors that a�ect performance 8 PHYSICAL QUERY PLANS

Algorithm 3 Merge Join

i f R1 not sorted on a t t r i b u t e A then
s o r t R1

i f r2 not sorted on a t t r i b u t e A then
s o r t R2

i =1, j=1
while i<=T(R1) and j<=T(R2) do

i f R1 [i] .A = R2 [j] .A then
k=j
while R1 [i] .A = R2 [k] .A do

output (R1 [i] ,R2 [k])
k += 1

i += 1
else i f R1 [i] .A > R2 [j] .A then

j += 1
else i f R1 [i] .A < R2 [j] .A then

i += 1

The index join uses an index de�ned on the joining attribute on one of the relations. The pseudocode can
be read in Algorithm 4.

Algorithm 4 Index Join

for each r in R1 do
X <= index (R2 , A r .A) # search in index on R2 .A t u p l e s wi th va lue r .A
for each s in X do

output (r , s)

The hash join uses a hash function on the joinin attribute. The pseudocode can be read in Algorithm

Algorithm 5 Hash Join (k buckets G1...Gk, H1...Hk)

hash R1 tup l e s i n to G buckets
hash R2 tup l e s i n to H buckets

for i=0 to k
match tup l e s that l i e in G[i] and H[i]

8.2 Factors that a�ect performance

Are the tuples of the relation stored physically together?

The more compactly stored in memory the relations are, the less number of pages needs to be fetched and so
the performance will increase.

Are relations sorted by join attribute?

If the relations are already sorted by the join attribute, the merge join is a great option, because the costly part
is the sorting (O (n log n)), while the joinin itself is O (n+m) where n,m are the sizes of both relations.

Indexes exist?

If there are no indexes, the index join is not even an option. And when there are indexes, they are not always
the best option, because if the attribute has low selectivity, the indexes will be returning single values often,

51

8.2 Factors that a�ect performance 8 PHYSICAL QUERY PLANS

and thus we will be only introducing overhead in the operation.

Example 8.1. Iteration join R1 ▷◁ R2 where relations are not contiguous, T (R1) = 10000 tuples, T (R2) =
5000 tuples, S (R1) = S (R2) = 1

10 block and M = 101 blocks (so we can work with at most 1010 tuples in
memory at once). In this case, B (R1) = 10000 and B (R2) = 5000.

For each tuple in R1, we need to:

� Read the tuple: 1 IO

� Read all tuples in R2: 5000 IOs (This is because the relations are not contiguously stored, so we need to
assume that we read a new block for each new tuple)

So, the total cost is
C = 10000 (1 + 5000) = 50 010 000 IOs.

Can this be improved? Yes!
If we do it reading 1000 tuples of R1 and doing the process in each of this chunks, we would need to, for

each chunk in R1:

� Read all tuples in the chunk: 1000 IOs

� Read all tuples in R2: 5000 IOs

So
C = 10 (1000 + 5000) = 60 000 IOs.

Can this be improved? Yes!
If we reverse the order of the join: R2 ▷◁ R1, then, for each chunk in R2:

� Read all tuples in the chunk: 1000 IOs

� Read all tuples in R1:10000 IOs

So
C = 5 (1000 + 10000) = 55 000 IOs.

In fact, the bigger R2 is compared to R1 the greater gain obtained when changing the order.

Example 8.2. Iteration join R1 ▷◁ R2 where relations are contiguous (same parameters). In this case,
B (R1) = 1000 and B (R2) = 500.

For each chunk in R2:

� Read the chunk: 100 IOs (now it is only 100 IOs because S (R2) =
1
10 block, so to read 1000 tuples we

need to read 100 blocks)

� Read R1: 1000 IOs

Thus,
C = 5 (100 + 1000) = 5 500 IOs.

We can see how the contigous storage greatly increase performance of the joins.

Theorem 8.1. In general, for an iteration join R1 ▷◁ R2 with sizes (in blocks) B (R1) and B (R2), and
a memory capacity of M blocks, the formula for the cost is

C =
B (R1)

M − 1
(M − 1 +B (R2)) .

Proof. We want to �rst take as many blocks from the �rst relation as we can, but we need to leave space for
joining the second relation, so we will use M − 1 blocks for storing the tuples for the �rst relation. This will

need to be done B(R1)
M−1 times. Now, for each of this iterations, we need to actually read the M − 1 blocks from

R1 and to read all blocks from R2. So the formula arises.

52

8.2 Factors that a�ect performance 8 PHYSICAL QUERY PLANS

Example 8.3. Merge join R1 ▷◁ R2 where both relations are already ordered by the joinin attribute and
relations are contiguous. In this case, we will need to read all blocks containing R1 and all block containing
R2, once. So

C = 1000 + 500 = 1 500 IOs.

So we can see how good a merge join where the relations are already ordered is. Let's see how the other
case performs:

Example 8.4. Merge join R1 ▷◁ R2 where R1, R2 are not ordered, but are contiguous.
In this case, �rst we need to sort the relations and there are di�erent ways to do this, we are going to explain

one, the merge join:

� Merge sort: For each 100 tuples chunk of R:

� Read the chunk

� Sort in memory

� Write to disk the ordered chunks

� Read the ordered chunks and merge them

� Write to disk the ordered relation

Cost (in terms of IO): each chunk is read, written, read, written, so 4× T (R)
S(R) = 4B (R).

In our case
sortC (R1) = 4000, sortC (R2) = 2000.

Now, the cost a merge join in which the relations are not ordered is the cost of the ordering plus the cost of the
join, so

C = 4000 + 2000 + 1500 = 7500 IOs.

Remember that the iteration cost was 5500 IOs, so in this case the merge join is not the best option.

Theorem 8.2. In general, for a merge join R1 ▷◁ R2 with sizes (in blocks) B (R1) and B (R2) where
the relations are contiguously stored, and a memory capacity of M blocks, the formula for the cost is

C = 5 (B (R1) +B (R2)) .

Proof. The cost is
C = Corder (R1) + Corder (R2) + Cjoin.

We have seen that Corder (R) = 4B (R) and Cjoin (R1, R2) = B (R1) +B (R2), and so the formula arises.

Example 8.5. Let in this case R1, R2 be contiguously stored, but unordered, with B(R1) = 10000 tuples and
B(R2) = 5000 tuples. In this case, the iteration join has a cost of

CIJ =
5000

100
(100 + 10000) = 505 000 IOs.

And the merge join
CMJ = 5 (10000 + 5000) = 75 000 IOs.

So, in this case the merge sort is better, even without the relations being previously ordered.

Theorem 8.3. For a join R1 ▷◁ R2 where the relations are contiguously stored and unordered, with sizes

(in blocks) B (R1) and B (R2), a memory capacity of M blocks, and assuming that B(R2)
M−1 > 4, a merge

join is preferred to an iteration join if, and only if,

B (R1) >
5B (R2)
B(R2)
M−1 − 4

.

53

8.2 Factors that a�ect performance 8 PHYSICAL QUERY PLANS

Proof. The merge join is preferred to the iteration join if, and only if

5 (B (R1) +B (R2)) <
B (R1)

M − 1
(M − 1 +B (R2)) = B (R1) +

B (R1)B (R2)

M − 1
⇐⇒

4B (R1) + 5B (R2) <
B (R1)B (R2)

M − 1
⇐⇒

B (R1)

[
4− B (R2)

M − 1

]
< −5B (R2) ⇐⇒

B (R1)

[
B (R2)

M − 1
− 4

]
> 5B (R2) ⇐⇒

B (R1) >
5B (R2)
B(R2)
M−1 − 4

.

Example 8.6. Let's apply the theorem to our two previous examples:

1. R2 ▷◁ R1, B (R1) = 1000, B (R2) = 500, M = 101, then

5B (R1)
B(R1)
M−1 − 4

=
5000

1000
100 − 4

=
5000

6
> 833 > 500,

so in this case the iteration join is preferred.

2. R2 ▷◁ R1, B (R1) = 10000, B (R2) = 5000,M = 101, then

5B (R1)
B(R1)
M−1 − 4

=
50000

10000
100 − 4

=
50000

96
< 521 < 5000,

so in this case the merge join is preferred.

How much memory do we need for merge sort?

Until now, we have disregarded the memory needed to perform the merge sort, but this is a crucial aspect of
it. If the relation does not �t entirely in memory, it is not straightforward to merge all the ordered chunks to
obtain a fully ordered relation.

In general, if we have M blocks in memory, and B blocks to sort, then we will take chunks of size k, so we
will have x

k chunks. Now, this number needs to be smaller than the memory size:

B

M
≤M,

or, equivalently
M2 ≥ B or M ≥

√
B.

Example 8.7. Following our examples: R1 is 1000 blocks, so M ≥ 31.62 and R2 is 500 blocks so M ≥ 22.36.
In this case, we need M ≥ 32 blocks, so it could be done because the memory was M = 101 blocks.

Can the merge join be improved?

Yes, we are imposing that the whole relation needs to be sorted, but maybe we can join the sorted chunks
without merging them.

If we did this, we would need to:

� Read R1 and write R1 sorted chunks

� Read R2 and write R2 sorted chunks

� Join

54

8.2 Factors that a�ect performance 8 PHYSICAL QUERY PLANS

So the total cost would be

C = 2B (R1) + 2B (R2) + [B (R1) +B (R2)] = 3 [B (R1) +B (R2)] .

Example 8.8. Index join R2 ▷◁ R1 with an index on R1.A of two levels, R2 contiguously stored and
unordered and assuming the index �ts in memory. Then, the cost is:

� Read R2: 500 IOs

� For each tuple in R2, check the index and only read a tuple in R1 if there is a match.

So
C = 500 +matches.

Thus, we need to estimate how many matches there will be. We can treat several cases:

1. If R1.A is a key attribute and R2.A is a foreign key:

matches (R2, R1) = T (R2) .

In this case the cost is
C = 500 + 5000 = 5500 IOs.

2. If we know V (R1, A) (number of distinct values of attribute A in R1) and T (R1), we can assume uniformity
and thus obtain

matches (R2, R1) =
V (R1, A)

T (R1)
× T (R2) .

In this case the cost is, assuming V (R1, A) = 5000,

C = 500 +
10000

5000
5000 = 10500 IOs.

3. If we know size (Dom (R1, A)) (number of distinct values that attribute A can take) and T (R1), we can
assume uniformity and thus obtain

matches (R2, R1) =
T (R1)

size (Dom (R1, A))
T (R2) .

In this case the cost is, assumiing size (Dom (R1, A)) = 1 000 000,

C = 500 +
10000

1000000
5000 = 550 IOs.

Example 8.9. Let's see what happens if the index does not �t in memory.
Let the R1.A index occupy 201 blocks (1 root and 200 leaves), so it cannot be fully �tted in memory

(M = 101). We can store the root node and 99 leaf nodes in memory. Then for each value to check, there is a
99
200 chance that we can �nd the value in memory, and 101

200 that we don't. Then, the cost of checking the value
in the index is

Cindex = 0× 99

200
+ 1× 101

200
≈ 0.5.

Thus, the total cost is
C = 500 + 5000 [0.5 + 2] = 13000 IOs.

In this case, we have assumed the case 2. The detailed explanation is:

� Read R2: 500 IOs

� For each tuple in R2 (5000×):

� We need to check the value in the index: 0.5 IOs

� And we need to recover the matches: assuming case 2 is 2 IOs, assuming case 3 is 0.1 IOs

55

8.2 Factors that a�ect performance 8 PHYSICAL QUERY PLANS

Theorem 8.4. In general, for an index join R1 ▷◁A R2 with sizes (in blocks) B (R1) and B (R2) and
sizes (in tuples) T (R1) and T (R2), where:

� There is an index for R1.A of size Bi.

� R2 is contiguously stored in memory.

� There is a memory capacity of M .

If the index does not �t in memory, the estimated cost is

C = B (R2) + T (R2)

[(
1− M − 2

Si

)
+matched

]
,

where matched depends on the assumtions about how the values of the index are distributed.
If the index �ts in memory, the estimated cost is

C = B (R2) + T (R2)×matched.

Proof. We will need to read all blocks of R2, which sums up to B (R2).
Then, for each tuple in R2, we need to check the index and recover all matches. Thus, if the index �ts in

memory, the result is obvious.
If the index does not �t in memory, we will store the root and M − 2 leave nodes. Thus

Prob (value in memory) =
M − 2

Si
,

so

Prob (value not in memory) = 1− Prob (value in memory) = 1− M − 2

Si
.

And so, we obtain the desired formula.

Let's now continue with the hash join:

Example 8.10. Hash join R1 ▷◁ R2 where R1, R2 are contiguously stored and unordered. According to
[2], we may hash each relation to 100 buckets, so the average size of a bucket is 10 blocks for R1 and 5 blocks
for R2. Since the smaller number, 5, is much less than the number of available bu�ers, we expect to have no
trouble performing a one-pass join on each pair of buckets. The number of disk IOs is 1500 to read each of
R1 and R2 while hashing into buckets, another 1500 to write all the buckets to disk, and a third 1500 to read
each pair of buckets into main memory again while taking the one-pass join of corresponding buckets. Thus,
the total cost is

C = 3 (B (R1) +B (R2)) = 4500 IOs.

About the memory requirements, we need the buckets to �t into memory. We are taking M − 1 buckets, so

the size of the buckets are B(R1)
M−1 blocks and B(R2)

M−1 blocks for buckets of R1 and buckets of R2, respectively. It

is enough to �t the smaller one, say B
M−1 blocks. Then, we need to ensure that

B

M − 1
< M − 1,

so we need to ful�ll
B < (M − 1)

2

or √
B < M − 1.

56

9 EXTENSIBLE DATABASES: POSTGRESQL

Part V

Extensibility

9 Extensible databases: PostgreSQL

This section is adapted from the course slides and PostgreSQL: Extensibility.
PostgreSQL is extensible because its operation is catalog-driven. Relational DB systems store information

about databases, tables, columns, etc., in what are commonly known as system catalogs.
The catalogs appear to the user as tables like any other, but the DBMS stores its internal bookkeeping in

them. One key di�erence between PostgreSQL and standard relational database systems is that PostgreSQL
stores much more information in its catalogs: not only information about tables and columns, but also infor-
mation about data types, functions, access methods, and so on. These tables can be modi�ed by the user, and
since PostgreSQL bases its operation on these tables, this means that PostgreSQL can be extended by users.
By comparison, conventional database systems can only be extended by changing hardcoded procedures in the
source code or by loading modules specially written by the DBMS vendor.

The PostgreSQL server can moreover incorporate user-written code into itself through dynamic loading.
That is, the user can specify an object code �le (e.g., a shared library) that implements a new type or function,
and PostgreSQL will load it as required. Code written in SQL is even more trivial to add to the server. This
ability to modify its operation �on the �y� makes PostgreSQL uniquely suited for rapid prototyping of new
applications and storage structures.

9.1 Types

9.1.1 Base types

Base types are those, like integer, that are implemented below the level of the SQL language. PostgreSQL can
only operate on such types through functions provided by the user and only understands the behavior of such
types to the extent that the user describes them.

9.1.2 Container types

Container types can be arrays, composites and ranges:

� Arrays can hold multiple values that are all of the same type. An array type is automatically created for
each base type, composite type, range type, and domain type. But there are no arrays of arrays.

� Composite types, or row types, are created whenever the user creates a table. It is also possible to use
CREATE TYPE to de�ne a �stand-alone� composite type with no associated table. A composite type is
simply a list of types with associated �eld names. A value of a composite type is a row or record of �eld
values.

� A range type can hold two values of the same type, which are the lower and upper bounds of the range.
Range types are user-created, although a few built-in ones exist.

9.1.3 Domains

A domain is based on a particular underlying type and for many purposes is interchangeable with its underlying
type. However, a domain can have constraints that restrict its valid values to a subset of what the underlying
type would allow. Domains are created using the SQL command CREATE DOMAIN.

9.1.4 Pseudo-types

There are a few �pseudo-types� for special purposes. Pseudo-types cannot appear as columns of tables or
components of container types, but they can be used to declare the argument and result types of functions.
This provides a mechanism within the type system to identify special classes of functions.

57

https://www.postgresql.org/docs/current/extend.html

9.2 Functions 9 EXTENSIBLE DATABASES: POSTGRESQL

9.1.5 Polymorphic types

Some pseudo-types of special interest are the polymorphic types, which are used to declare polymorphic func-
tions. This powerful feature allows a single function de�nition to operate on many di�erent data types, with
the speci�c data type(s) being determined by the data types actually passed to it in a particular call.

9.2 Functions

PostgreSQL provides four kinds of functions:

� query language functions (functions written in SQL)

� procedural language functions (functions written in, for example, PL/pgSQL or PL/Tcl)

� internal functions

� C-language functions

Every kind of function can take base types, composite types, or combinations of these as arguments (parameters).
In addition, every kind of function can return a base type or a composite type. Functions can also be de�ned
to return sets of base or composite values.

9.2.1 SQL functions

SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the list. In
the simple (non-set) case, the �rst row of the last query's result will be returned. (Bear in mind that �the �rst
row� of a multirow result is not well-de�ned unless you use ORDER BY). If the last query happens to return
no rows at all, the null value will be returned.

Alternatively, an SQL function can be declared to return a set (that is, multiple rows) by specifying the
function's return type as SETOF sometype, or equivalently by declaring it as RETURNS TABLE(columns). In
this case all rows of the last query's result are returned.

Any collection of commands in the SQL language can be packaged together and de�ned as a function.
However, the �nal command must be a SELECT or have a RETURNING clause that returns whatever is
speci�ed as the function's return type. Alternatively, if you want to de�ne an SQL function that performs
actions but has no useful value to return, you can de�ne it as returning void.

Example 9.1. A SQL function de�ned by the user.

CREATE FUNCTION clean_emp () RETURNS void AS '
DELETE FROM emp

WHERE sa l a r y < 0 ;
' LANGUAGE SQL;

Remark 9.1. The entire body of an SQL function is parsed before any of it is executed. While an SQL function
can contain commands that alter the system catalogs (e.g., CREATE TABLE), the e�ects of such commands
will not be visible during parse analysis of later commands in the function. Thus, for example, CREATE
TABLE foo (...); INSERT INTO foo VALUES(...); will not work as desired if packaged up into a single SQL
function, since foo won't exist yet when the INSERT command is parsed. It's recommended to use PL/pgSQL
instead of an SQL function in this type of situation.

Remark 9.2. More than one function can be de�ned with the same SQL name, so long as the arguments they
take are di�erent. In other words, function names can be overloaded. This is called function overloading.

9.2.2 Procedural functions

PostgreSQL allows user-de�ned functions to be written in other languages besides SQL and C. These other lan-
guages are generically called procedural languages (PLs). Procedural languages aren't built into the PostgreSQL
server; they are o�ered by loadable modules.

58

9.3 Procedures 9 EXTENSIBLE DATABASES: POSTGRESQL

9.2.3 Internal functions

Internal functions are functions written in C that have been statically linked into the PostgreSQL server. The
�body� of the function de�nition speci�es the C-language name of the function, which need not be the same as
the name being declared for SQL use.

Normally, all internal functions present in the server are declared during the initialization of the database
cluster, but a user could use CREATE FUNCTION to create additional alias names for an internal function.
Internal functions are declared in CREATE FUNCTION with language name internal.

Example 9.2. An internal function.

CREATE FUNCTION square_root (double p r e c i s i o n) RETURNS double p r e c i s i o n
AS ' dsqrt '
LANGUAGE in t e r n a l
STRICT;

9.2.4 C-Language functions

User-de�ned functions can be written in C (or a language that can be made compatible with C, such as C++).
Such functions are compiled into dynamically loadable objects (also called shared libraries) and are loaded by the
server on demand. The dynamic loading feature is what distinguishes �C language� functions from �internal�
functions � the actual coding conventions are essentially the same for both. (Hence, the standard internal
function library is a rich source of coding examples for user-de�ned C functions.)

Currently only one calling convention is used for C functions (�version 1�). Support for that calling convention
is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function.

9.2.5 Function volatility categories

Every function has a volatility classi�cation, with the possibilities being VOLATILE, STABLE, or IMMUTABLE.
VOLATILE is the default if the CREATE FUNCTION command does not specify a category. The volatility
category is a promise to the optimizer about the behavior of the function:

� AVOLATILE function can do anything, including modifying the database. It can return di�erent results
on successive calls with the same arguments. The optimizer makes no assumptions about the behavior
of such functions. A query using a volatile function will re-evaluate the function at every row where its
value is needed.

� A STABLE function cannot modify the database and is guaranteed to return the same results given the
same arguments for all rows within a single statement. This category allows the optimizer to optimize
multiple calls of the function to a single call. In particular, it is safe to use an expression containing such
a function in an index scan condition. (Since an index scan will evaluate the comparison value only once,
not once at each row, it is not valid to use a VOLATILE function in an index scan condition.)

� An IMMUTABLE function cannot modify the database and is guaranteed to return the same results
given the same arguments forever. This category allows the optimizer to pre-evaluate the function when a
query calls it with constant arguments. For example, a query like SELECT ... WHERE x = 2 + 2 can be
simpli�ed on sight to SELECT ... WHERE x = 4, because the function underlying the integer addition
operator is marked IMMUTABLE.

For best optimization results, you should label your functions with the strictest volatility category that is valid
for them.

9.3 Procedures

A procedure is a database object similar to a function. The key di�erences are:

� Procedures are de�ned with the CREATE PROCEDURE command, not CREATE FUNCTION.

� Procedures do not return a function value; hence CREATE PROCEDURE lacks a RETURNS clause.
However, procedures can instead return data to their callers via output parameters

59

9.4 Interfacing extensions to indexes 9 EXTENSIBLE DATABASES: POSTGRESQL

� While a function is called as part of a query or DML (data manipulation language) command, a procedure
is called in isolation using the CALL command.

� A procedure can commit or roll back transactions during its execution (then automatically beginning a
new transaction), so long as the invoking CALL command is not part of an explicit transaction block. A
function cannot do that.

� Certain function attributes, such as strictness, don't apply to procedures. Those attributes control how
the function is used in a query, which isn't relevant to procedures.

Collectively, functions and procedures are also known as routines. There are commands such as ALTER
ROUTINE and DROP ROUTINE that can operate on functions and procedures without having to know which
kind it is. Note, however, that there is no CREATE ROUTINE command.

9.4 Interfacing extensions to indexes

The procedures described thus far let you de�ne new types, new functions, and new operators. However, we
cannot yet de�ne an index on a column of a new data type. To do this, we must de�ne an operator class
for the new data type.Operator classes can be grouped into operator families to show the relationships between
semantically compatible classes. When only a single data type is involved, an operator class is su�cient.

The operators associated with an operator class are identi�ed by �strategy numbers�, which serve to identify
the semantics of each operator within the context of its operator class. For example, B-trees impose a strict
ordering on keys, lesser to greater, and so operators like �less than� and �greater than or equal to� are interesting
with respect to a B-tree. Because PostgreSQL allows the user to de�ne operators, PostgreSQL cannot look at
the name of an operator (e.g., < or >=) and tell what kind of comparison it is. Instead, the index method
de�nes a set of �strategies�, which can be thought of as generalized operators. Each operator class speci�es
which actual operator corresponds to each strategy for a particular data type and interpretation of the index
semantics.

Example 9.3. The B-tree index method de�nes �ve strategies, shown in the next Table.
Operation Strategy Number

less than 1
less than or equal 2

equal 3
greater than or equal 4

greater than 5

9.5 Steps to create a PostgreSQL extension

1. Create the appropriate �le structure: extension−version.sql, extension.c, Makefile, extension.control.

2. Create the data types.

3. Create I/O functions.

4. Create constructors, getters, setters.

5. Create needed functions.

6. Create operators =, <,≤, >,≥, ...

7. De�ne operator classes for indexes.

60

10 FAILURE RECOVERY

Part VI

Failure Recovery and concurrency control

10 Failure recovery

De�nition 10.1. Integrity constraints are predicates that all data in the database must satisfy.
A database is said to be in a consistent state if it satis�es all constraints de�ned on it. In such case,
the database itself is said to be a consistent DB.

Remark 10.1. Databases cannot be consistent at all times, because when some operations are being done, it is
possible to be in intermediate non-consistent states.

A transaction is a collection of actions that preserve consistency. Thus, a transaction should be the
smallest unit of processing in the database.

A fundamental assumption about transactions is the correctness principle:

Correctness principle: If a transaction executes in the absence of any other transactions or system
errors, and it starts with the database in a consistent state, then the database is also in a consistent
state when the transaction ends.

There is a converse to the correctness principle that forms the motivation for both the logging techniques
that we are going to see. This converse involves two points:

1. A transaction is atomic, that is, it must be executed as a whole or not at all. If only part of a transaction
executes, then the resulting database state may not be consistent. For example, if the system crashes in
the middle of a transaction, if there is a media failure,...

2. Transactions that execute simultaneously are likely to lead to an inconsistent state unless we take steps
to control their interactions (refer to Section 11).

In order to study the details of logging algorithms and other transactionmanagement algorithms, we need a
notation that describes all the operations that move data between address spaces. The primitives we shall use
are:

� INPUT(X): Copy the disk block containing database element X to a memory bu�er.

� READ(X,t): Copy the database element X to the transaction's local variable t. More precisely, if the
block containing database element X is not in a memory bu�er then �rst execute INPUT (X). Next, assign
the value of X to local variable t.

� WRITE(X,t): Copy the value of local variable t to database element X in a memory bu�er. More precisely,
if the block containing database element X is not in a memory bu�er then execute INPUT(X). Next, copy
the value of t to X in the bu�er.

� OUTPUT (X): Copy the block containing X from its bu�er to disk

10.1 Key problem: un�nished transactions

Un�nished transactions are a great problem when dealing with consistency. If we assume the correctness
principle and all transactions execute completely (and isolated) then databases would always be consistent, and
we would not be studying this, so there are reasons that makes transactions not to �nish completely, leading to
inconsistent states.

61

10.1 Key problem: un�nished transactions 10 FAILURE RECOVERY

Example 10.1. Imagine we impose the constraint A = B and we want to execute the transaction

T1 :A← A× 2

B ← B × 2

It is obvious that if the database is consistent at the beginning of the transaction, it will also be consistent at
the end, because both values start being the same, and they are modi�ed in the same way.

Let's see how things can go wrong.
Imagine the following plan:

T1 :Read (A, t) ; t← t× 2

Write (A, t) ;

Read (B, t) ; t← t× 2

Write (B, t) ;

Output (A) ;

Output (B) ;

The initial state is:
Memory Disk

A 8
B 8

After Read (A, t):
Memory Disk

A 8 A 8
B 8

t 8
After t← t× 2:
Memory Disk

A 8 A 8
B 8

t 16

After Write (A, t):
Memory Disk

A 16 A 8
B 8

t 16

After Read (B, t):
Memory Disk

A 16 A 8
B 8 B 8
t 8

After t← t× 2:
Memory Disk

A 16 A 8
B 8 B 8
t 16

After Write (B, t):
Memory Disk

A 16 A 8
B 16 B 8
t 16

After Output (A):

62

10.2 Logging 10 FAILURE RECOVERY

Memory Disk

A 16 A 16
B 16 B 8
t 16

After Output (B):
Memory Disk

A 16 A 16
B 16 B 16
t 16

If all actions execute, as we can see, the �nal state is consistent. Nonetheless, there is one point in the
procedure when a failure in the system can leave it in an inconsistent state: after Output (A) and before
Output (B) the database is inconsistent!

We need to be able to ensure atomicity of transactions: all actions are executed, or none of them. For this
purpose, logging is an useful technique. Basically, the idea is to annotate all actions done in a �le, and if the
system crashes, we can consult this �le and rollback un�nished transactions, continuing from the point left,...

10.2 Logging

De�nition 10.2. A log is a �le of log records, each telling something about what some transaction
has done. If log records appear in nonvolatile storage, we can use them to restore the database to a
consistent state after a system crash.

There are several forms of log record that are used with each of the types of logging we discuss in this
chapter. These are:

1. <START T>: This record indicates that transaction T has begun.

2. <COMMIT T>: Transaction T has completed successfully and will make no more changes to database
elements. Any changes to the database made by T should appear on disk. However, because we cannot
control when the bu�er manager chooses to copy blocks from memory to disk, we cannot in general be
sure that the changes are already on disk when we see the <C0MMIT T> log record. If we insist that
the changes already be on disk, this requirement must be enforced by the log manager (as is the case for
undo logging).

3. < ABORT T>: Transaction T could not complete successfully. If transaction T aborts, no changes it
made can have been copied to disk, and it is the job of the transaction manager to make sure that such
changes never appear on disk, or that their e�ect on disk is cancelled if they do.

10.2.1 Undo logging

Undo logging makes repairs to the database state by undoing the e�ects of transactions that may not have
completed before the crash.

For an undo log, the only other kind of log record we need is an update record, which is a triple < T ,X ,v>
. The meaning of this record is: transaction T has changed database element X , and its former value was v.
The change re�ected by an update record normally occurs in memory, not disk.

An undo log does not record the new value of a database element, only the old value. If recovery is necessary
in a system using undo logging, the only thing the recovery manager will do is cancel the possible e�ect of a
transaction on disk by restoring the old value.

Example 10.2. Let's repeat the previous example with an undo log added to the scheme.
Initially:
Memory Disk

A 8
B 8

Log

The transaction T1 starts:

63

10.2 Logging 10 FAILURE RECOVERY

Memory Disk

A 8
B 8

Log

<T1,start>

Read (A, t) ; t← t× 2:
Memory Disk

A 8 A 8
B 8

t 16

Log

<T1,start>

Write (A, t):
Memory Disk

A 16 A 8
B 8

t 16

Log

<T1,start>
<T1,A,8>

Reat (B, t) ; t← t× 2:
Memory Disk

A 16 A 8
B 8 B 8
t 16

Log

<T1,start>
<T1,A,8>

Write (B, t):
Memory Disk

A 16 A 8
B 16 B 8
t 16

Log

<T1,start>
<T1,A,8>
<T1,B,8>

Output (A):
Memory Disk

A 16 A 16
B 16 B 8
t 16

Log

<T1,start>
<T1,A,8>
<T1,B,8>

Output (B):

Memory Disk

A 16 A 16
B 16 B 16
t 16

Log

<T1,start>
<T1,A,8>
<T1,B,8>

<T1,commit>

Imagine the system crashes after Output (A) and before Output (B). When we switch on the system again,
the database system manager would check the log and see that T1 is un�nished, so it would set the values of A
and B to be 8, and consistency would be recovered.

Complications

Another aspect to take into account, is that the log must be �rst written in memory, not written to disk on
every action, so some problems can arise.

Example 10.3. First bad state: DB modi�ed before log is written
Memory

A 16
B 16
t 16

Log:
<T1,start>
<T1,A,8>
<T1,B,8>

Disk

A 16
B 8

Log

If the system crashes now, we lose the log information in memory, and we don't have it on disk, so we would
not be able to recover to the previous consistent state.

64

10.2 Logging 10 FAILURE RECOVERY

Example 10.4. Second bad state: log written before DB modi�ed
Memory

A 16
B 16
t 16

Log:
<T1,start>
<T1,A,8>
<T1,B,8>

<T1,commit>

Disk

A 16
B 8

Log

<T1,start>
<T1,A,8>
<T1,B,8>

<T1,commit>

If the system fails now, we would think that B has been correctly chanegd, because the bu�er manager has
not issued the Output (B) operator yet.

An undo log is su�cient to allow recovery from a system failure, provided transactions and the bu�er
manager obey two rules:

U1) If transaction T modi�es database element X , then the log record of the form < T ,X ,v> must be written
to disk before the new value of X is written to disk.

U2) If a transaction commits, then its COMMIT log record must be written to disk only after all database
elements changed by the transaction have been written to disk, but as soon thereafter as possible.

In order to force log records to disk, the log manager needs a �ush-log command that tells the bu�er manager
to copy to disk any log blocks that have not previously been copied to disk or that have been changed since
they were last copied. In sequences of actions, we shall show FLUSH LOG explicitly.

Example 10.5. Let's repeat the example with all this rules:
Step Action t MemA MemB DiskA DiskB MemLog DiskLog

1 <Start T>
2 Read(A, t) 8 8 8 8
3 t← t× 2 16 8 8 8
4 Write (A, t) 16 16 8 8 <T,A,8>
5 Read (B, t) 8 16 8 8 8
6 t← t× 2 16 16 8 8 8
7 Write (B, t) 16 16 16 8 8 <T,B,8>
8 FlushLog <Start T>;<T,A,8>;<T,B,8>
9 Output (A) 16 16 16 16 8
10 Output (B) 16 16 16 16 16
11 <Commit T>
12 FlushLog <Commit T>

In this case, at any point in the process, if there is a failure, we would be able to rollback to a previous
consistent state using the log written in disk.

When an error ocurrs, there is a procedure to follow, which is detailed in Algorithm 6. Note that if a failure
occurs during recovery, nothing goes wrong, because the recovery procedure would start over again when the
system is switched on and the rollback operations would proceed in the same manner.

65

10.2 Logging 10 FAILURE RECOVERY

Algorithm 6 Undo logging: recovery rules

Let S = se t o f t r an sa c t i on with <Ti , s t a r t > in log , but no
<Ti , commit> not <Ti , abort> in l og

for each <Ti ,X, v> in l og in r e v e r s e order do
i f Ti in S then

wr i t e (X, v)
output (X)

for each Ti in S do
wr i t e <Ti , abort> to log

10.2.2 Redo logging

Undo logging has a potential problem that we cannot commit a transaction without �rst writing all its changed
data to disk. Sometimes, we can save disk I/O 's if we let changes to the database reside only in main memory
for a while. As long as there is a log to �x things up in the event of a crash, it is safe to do so. The requirement
for immediate backup of database elements to disk can be avoided if we use a logging mechanism called redo
logging. The principal di�erences between redo and undo logging are:

1. While undo logging cancels the e�ect of incomplete transactions and ignores committed ones during recov-
ery, redo logging ignores incomplete transactions and repeats the changes made by committed transactions.

2. While undo logging requires us to write changed database elements to disk before the COMMIT log record
reaches disk, redo logging requires that the COMMIT record appear on disk before any changed values
reach disk.

3. While the old values of changed database elements are exactly what we need to recover when the undo
rules U1 and U2 are followed, to recover using redo logging, we need the new values instead.

In redo logging the meaning of a log record <T, X , v> is �transaction T wrote new value v for database element
X �. There is no indication of the old value of X in this record. Every time a transaction T modi�es a database
element X , a record of the form < T ,X ,v> must be written to the log.

For redo logging, the order in which data and log entries reach disk can be described by a single �redo rule,�
called the write-ahead logging rule.

R1) Before modifying any database element X on disk, it is necessary that all log records pertaining to this
modi�cation of X , including both the update record < T ,X ,v> and the <C0MMIT T> record, must
appear on disk.

Example 10.6. Let's repeat the same example with this new logic.
Step Action t MemA MemB DiskA DiskB MemLog DiskLog

1 <Start T>
2 Read(A, t) 8 8 8 8
3 t← t× 2 16 8 8 8
4 Write (A, t) 16 16 8 8 <T,A,16>
5 Read (B, t) 8 16 8 8 8
6 t← t× 2 16 16 8 8 8
7 Write (B, t) 16 16 16 8 8 <T,B,16>
8 <Commit T>
9 <Start T>;<T,A,16>;<T,B,16>;<Commit T>
10 Output (A) 16 16 16 16 8
11 Output (B) 16 16 16 16 16

The procedure to recover from a failure is di�erent from that of undo logging. In undo logging, we discard
uncommited changes, because we are unsure if they are done in the database. In redo logging, we proceed by
doing again those changes that are commited, because these are now those that we are unsure about, while

66

10.2 Logging 10 FAILURE RECOVERY

uncommitted changes we know for sure that have not been made. The recovery rules for redo logging are
illustrated in Algorithm 7.

Algorithm 7 Redo logging: recovery rules

Let S = se t o f t r an sa c t i on with <Ti , s t a r t > in log , but no
<Ti , commit> not <Ti , end> in l og

for each <Ti ,X, v> in l og in forward order do
i f Ti in S then

wr i t e (X, v)
output (X)

for each Ti in S do
wr i t e <Ti , end> to log

Combining <Ti,end> records

There exist objects that are accessed often, which are usually called hot objects. One idea about this object
is that as they are accessed very often, they would require lots of I/O operations and, many times, updated
values of these objects would not even be needed to have been on disk, so we can try to delay writing them to
disk as long as we can work with their values in memory. This way, we can just write their latest value and
perform less I/O operations.

Example 10.7. Imagine we have four transactions:
T1 : ..update X..,T2 : ..update X..,T3 : ..update X..,T4 : ..update X.. which can be executed with the following

set of actions:

Write (X)
Output (X)
Write (X)
Output (X)
Write (X)
Output (X)
Write (X)
Output (X)

And this way we would be updating X unnecessarily. A better way to handle this is:

Write (X)

((((((Output (X)
Write (X)

((((((Output (X)
Write (X)

((((((Output (X)
Write (X)
Output (X)

combined < end >

Nonetheless, there is an even better way to tackle this problem: checkpointing.

10.2.3 Checkpointing with undo logging

As we observed, recovery requires that the entire log be examined, in principle. When logging follows the undo
style, once a transaction has its COMMIT log record written to disk, the log records of that transaction are
no longer needed during recovery. We might imagine that we could delete the log prior to a COMMIT, but
sometimes we cannot. The reason is that often many transactions execute at once. If we truncated the log
after one transaction committed, log records pertaining to some other active transaction T might be lost and

67

10.2 Logging 10 FAILURE RECOVERY

could not be used to undo T if recovery were necessary. The simplest way to untangle potential problems is to
checkpoint the log periodically. In a simple checkpoint, we:

1. Stop accepting new transactions.

2. Wait until all currently active transactions commit or abort and have written a COMMIT or ABORT
record on the log.

3. Flush the log to disk.

4. Write a log record <CKPT>, and �ush the log again.

5. Resume accepting transactions.

Example 10.8. An undo log with checkpointing:

< Start T1 >
< T1, A, 5 >
< Start T2 >
< T2, B, 10 >
−−−−−−
< T2, C, 15 >
< T1, D, 20 >

< Commit T1 >
< Commit T2 >
< CKPT >
< Start T3 >
< T3, E, 25 >

...

In the dotted line, a checkpoint was launched, so no more transactions are accepted to execute until T1 and
T2 �nish. When both transactions commit, we can now write the checkpoint and accept new transactions, such
as T3.

10.2.4 Checkpointing with redo logging

The steps to perform a checkpoint of a redo log are as follows:

1. Write a log record <START CKPT (Ti,... ,Tk)>, where Ti,... ,Tk are all the active (uncommitted)
transactions, and �ush the log.

2. Write to disk all database elements that were written to bu�ers but not yet to disk by transactions that
had already committed when the START CKPT record was written to the log.

3. Write an <END CKPT> record to the log and �ush the log.

Example 10.9. A redo log with checkpointing:
When we start the checkpoint, only T2 is active, but the value of A written by T1 may have reached disk.

If not, then we must copy A to disk before the checkpoint can end.

< Start T1 >
< T1, A, 5 >
< Start T2 >

< Commit T1 >
< T2, B, 10 >

< Start CKPT (T2) >
< T2, C, 15 >
< Start T3 >
< T3, D, 20 >

< End CKPT >
< Commit T2 >
< Commit T3 >

68

11 CONCURRENCY CONTROL

10.2.5 Undo/Redo logging

We have seen two di�erent approaches to logging, di�erentiated by whether the log holds old values or new
values when a database element is updated. Each has certain drawbacks:

� Undo logging requires that data be written to disk immediately after a transaction �nishes, perhaps
increasing the number of disk I/O operations that need to be performed.

� On the other hand, redo logging requires us to keep all modi�ed blocks in bu�ers until the transaction
commits and the log records have been �ushed, perhaps increasing the average number of bu�ers required
by transactions.

� Both undo and redo logs may put contradictory requirements on how bu�ers are handled during a check-
point, unless the database elements are complete blocks or sets of blocks. For instance, if a bu�er contains
one database element A that was changed by a committed transaction and another database element B
that was changed in the same bu�er by a transaction that has not yet had its COMMIT record written
to disk, then we are required to copy the bu�er to disk because of A but also forbidden to do so, because
rule R1 applies to B.

An undo/redo log has the same sorts of log records as the other kinds of log, with one exception. The update
log record that we write when a database element changes value has four components. Record < T ,X ,v,w >
means that transaction T changed the value of database element X; its former value was v, and its new value
is w. The constraints that an undo/redo logging system must follow are summarized by the following rule:

UR1) Before modifying any database element X on disk because of changes made by some transaction T, it is
necessary that the update record <T, X , v, w> appear on disk.

Example 10.10. An undo/redo log. Let's redo our typical example:
Step Action t MemA MemB DiskA DiskB MemLog DiskLog

1 <Start T>
2 Read(A, t) 8 8 8 8
3 t← t× 2 16 8 8 8
4 Write (A, t) 16 16 8 8 <T,A,8,16>
5 Read (B, t) 8 16 8 8 8
6 t← t× 2 16 16 8 8 8
7 Write (B, t) 16 16 16 8 8 <T,B,8,16>
8 FlushLog <Start T>;<T,A,8,16>;<T,B,8,16>
9 Output (A) 16 16 16 16 8
10 <Commit T>
11 Output (B) 16 16 16 16 16

Note that, in this case, the last three steps could've appeared in any order.

The undo/redo recovery policy is:

1. Redo all the committed transactions in the order earlierst-�rst.

2. Undo all the uncommitted transactions in the order latest-�rst.

11 Concurrency control

Interactions among concurrently executing transactions can cause the database state to become inconsistent,
even when the transactions individually preserve correctness of the state, and there is no system failure. Thus,
the timing of individual steps of di�erent transactions needs to be regulated in some manner. This regulation
is the job of the scheduler component of the DBMS, and the general process of assuring that transactions
preserve consistency when executing simultaneously is called concurrency control.

69

11.1 Schedules: serial, serializable and con�ict-serializable 11 CONCURRENCY CONTROL

11.1 Schedules: serial, serializable and con�ict-serializable

De�nition 11.1. A schedule is a sequence of the important actions taken by one or more transactions.

Example 11.1. Imagine we have the constraint A = B and the following two transactions:

T1 :Read (A) T2 :Read (A)

A← A+ 100 A← A× 2

Write (A) Write (A)

Read (B) Read (B)

B ← B + 100 B ← B × 2

Write (B) Write (B)

Note how each of the transactions individually preserves the consistency of the database. Nonetheless, there
exist some schedules that can make things go wrong!

Schedule A:
T1 T2 A B

25 25

Read(A); A<-A+100
Write(A); 125

Read(B); B<-B+100
Write(B); 125

Read(B); A<-A*2
Write(A); 250

Read(B); B<-B*2
Write(B); 250

250 250
This schedule poses no problems.
Schedule B:

T1 T2 A B
25 25

Read(A); A<-A*2
Write(A); 50

Read(B); B<-B*2
Write(B); 50

Read(A); A<-A+100
Write(A); 150

Read(B); B<-B+100
Write(B); 150

150 150
This schedule poses no problems. Note, nonetheless, how the di�erent orderings a�ect the �nal result.
Schedule C:

T1 T2 A B
25 25

Read(A); A<-A+100
Write(A); 125

Read(A); A<-A*2
Write(A); 250

Read(B); B<-B+100
Write(B); 125

Read(B); B<-B*2
Write(B); 250

250 250

70

11.1 Schedules: serial, serializable and con�ict-serializable 11 CONCURRENCY CONTROL

This schedule poses no problems.
Schedule D:

T1 T2 A B
25 25

Read(A); A<-A+100
Write(A); 125

Read(A); A<-A*2
Write(A); 250

Read(B); B<-B*2
Write(B); 50

Read(B); B<-B+100
Write(B); 150

250 150
But this schedule is problematic! The �nal state of the database is inconsistent.

We want schedules that are 'good ', in the sense that they ensure the �nal state of the database to be
consistent, independent of the transactions' semantics and the initial (consistent) state of the database.

For this, we should only look at the order of read and writes.
A schedule can be represented as its sequence of actions, where ri (X) means X is read in transaction i and

wi (X) means X is written in transaction i.
For example, schedule C can be represented as

SC = r1 (A)w1 (A) r2 (A)w2 (A) r1 (B)w1 (B) r2 (B)w2 (B) .

De�nition 11.2. A schedule is serial if its actions consist of all the actions of one transaction, then all
actions of another transaction, and so on.

For example, Schedules A and B are serial.

Remark 11.1. Note that all serial schedules work: they leave a consistent database, because of the correctness
principle.

De�nition 11.3. A schedule S is serializable if there is a serial schedule S′ such that for every initial
database state, the e�ects of S and S′ are the same.

For example, Schedule C is serializable, with C ′ = A, but schedule D is not serializable, because it leads to
an inconsistent state.

The transaction game

It is a way to visually check for serializability (only for simple schedules).

Example 11.2. For example, Schedule C is:
A r w r w
B r w r w
T1 r w r w
T2 r w r w

Here, we represents taken by each transaction and the a�ected variable, in the order of the schedule. Now,
two steps can be exchanged if they are next to one another and they can slide without colliding.

A r w r w
B r w r w
T1 r w r w
T2 r w r w

Here, the red colored steps cannot be exchanged, because they collide in the �rst row.

71

11.1 Schedules: serial, serializable and con�ict-serializable 11 CONCURRENCY CONTROL

A r w r w
B r w r w
T1 r w r w
T2 r w r w

But now, the green colored steps can be exchanged, because they are next to each other and they do not
collide if we slide the columns:

A r w r w
B r w r w
T1 r w r w
T2 r w r w

And this is schedule A!

Example 11.3. Now, for schedule D:
A r w r w
B r w r w
T1 r w r w
T2 r w r w

Everything is red!

Let's continue the discussion to try to understand why D is di�erent from C.

De�nition 11.4. We de�ne con�icting actions as those that cannot be reordered in a schedule. These
are:

� Obviously, actions made by the same transactions cannot be reordered.

� But there are also actions from di�erent transactions whose reordering would a�ect the result:

� r1 (A) and w2 (A) cannot be reordered

� w2 (A) and r1 (A) cannot be reordered

� w1 (A) and w2 (A) cannot be reordered

De�nition 11.5. A schedule is con�ict serializable if it can be serialized without violating any
con�icting action. If S is con�ict serializable to S′, then S and S′ are con�ict equivalent.

These de�nitions allow us to create a mathematical tool for determining 'good ' schedules, understanding
that as a con�ict serializable schedule. This goal is achieved by a precedence graph:

De�nition 11.6. A precedence graph of a schedule S, P (S), is graph P (S) = (N,E) where:

� The nodes, N , are the transactions in S.

� The arcs are directed, and (Ti, Tj) ∈ E whenever:

� pi (A) , qj (A) are actions in S

� pi (A) <S qj (A), i.e., pi (A) precedes qj (A)

� at least one of pi, qj is a write

Example 11.4. Let's compute P (S) for

S = w3 (A)w2 (C) r1 (A)w1 (B) r1 (C)w2 (A) r4 (A)w4 (D)

72

11.2 How to enforce serializability: locking 11 CONCURRENCY CONTROL

How to use precedence graphs to determine con�ict-serializability?

To tell whether a schedule S is con�ict-serializable, construct the precedence graph for S and ask if there are
any cycles. If so, then S is not con�ict-serializable. But if the graph is acyclic, then S is con�ict-serializable.

Example 11.5. The schedule in Example 11.4 is not con�ict serializable, because there is cycle between nodes
1 and 2.

Example 11.6. Is S = w1 (A) r2 (A) r3 (A)w4 (A) con�ict serializable?
First, construct the precedence graph:

In this case, there are no cycles, so S is con�ict serializable.

11.2 How to enforce serializability: locking

11.2.1 Option 1: let luck be our friend

Run the system, recording the precedence graphs of the schedules used. At the end of the day (at some decided
point in time), check for P (S) cycles and declared if the execution was good.

Of course, this is not a very good option, because we are letting luck decide whether we are losing time and
energy or not.

11.2.2 Option 2: a locking protocol

Prevent cycles from occurring!
Now, we de�ne two new actions:

� LOCK(A), li (A): lock access to object A, i.e., only transaction i can access object A both for read and
write.

73

11.2 How to enforce serializability: locking 11 CONCURRENCY CONTROL

� UNLOCK(A), ui (A): unlock A so it can be accessed by other transactions.

De�nition 11.7. Rule 1: A transaction is well-formed if before performing any operation on an
object A, it has locked it before, and it unlocks it afterwards.

De�nition 11.8. Rule 2: A schedule is legal if all objects that are locked, have been previously
unlocked (or never locked before).

Example 11.7. Let's analyze some schedules in terms of well-form and legality:

� S1=l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B) ç

Let's start assessing if all transactions are well-formed:

S1=l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

As we can see, all actions of each transaction are preceded by a lock to the pertinent object and an unlock
afterwards, so all transactions are well formed.

Regarding legality:

S1=l1(A)l1(B)r1(A)w1(B)l2(B)u1(A)u1(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

We can see how object B is locked by transaction 2 before being unlocked by transaction 1, so the schedule
is not legal.

� S2=l1(A)r1(A)w1(B)u1(A)u1(B)l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)

Regarding well-form:

S2=¾?l1(A)r1(A)w1(B)u1(A)u1(B)l2(B)r2(B)w2(B)l3(B)r3(B)u3(B)¾?

B is modi�ed by transaction 1 before being locked, so transaction 1 is not well formed.

B is locked, read and written by transaction 2, but it is never unlocked, so transaction 2 is also not well
formed.

Transaction 3 is well formed.

Regarding legality, we can see how B is locked by transaction 3 before being unlocked by transacion 2, so
the schedule is not legal.

� S3=l1(A)r1(A)u1(A)l1(B)w1(B)u1(B)l2(B)r2(B)w2(B)u2(B)l3(B)r3(B)u3(B)

This schedule is obviously legal and all transactions are well formed.

De�nition 11.9. Rule 3: The two phase locking (2PL) scheme refers to a strategy for scheduling
in which there are no unlocks for transaction Ti until all locks for Ti have been acquired, and there are
no locks for Ti after any unlock for Ti, i.e., all locks are acquired before any unlock is performed.

Theorem 11.1. All schedules verifying rules 1,2 and 3 are con�ict-serializable. Meaning, if a schedule
has all its transactions well-formed, the schedule is legal and it uses the 2PL locking scheme, then the
schedule is con�ict-serializable.

Remark 11.2. Note that the converse is not true: there are con�ict-serializable schedules that are not 2PL.

Beyond the 2PL protocol, it is all a matter of improving performance and allowing more concurrency, for
these, there exist more artifacts, such as shared locks, multiple granularity locks,...

74

11.3 Shared locks 11 CONCURRENCY CONTROL

11.3 Shared locks

Until now, we are locking an object before any action can be applied to it, but sometimes it is possible to
actually grant access to several transactions to interact with the same object, if the actions that they need to
perform are not in con�ict. For example, if two transactions want to read from the same variable, they can do
it without problem, but with our scheme we don't allow this.

A way to amend this is to de�ne shared locks which are locks that can be shared by several transactions,
provided they only want to read the object.

We de�ne new actions:

� EXCLUSIVE-LOCK(A), xli (A): lock object A in exclusive mode, i.e., no other transaction can lock it
until it is unlocked.

� SHARED-LOCK(A), sli (A): lock object A in shared mode, i.e., other transactions can lock it in shared
mode, but not in exclusive mode.

� EXCLUSIVE-UNLOCK(A), xui (A): unlock A from exclusive lock.

� SHARED-UNLOCK(A), sui (A): unlock A from shared lock.

Note that it is usual to just represent both unlocks by ui (A), assuming the computer will execute the correct
action depending on the state of the object.

Now, we have to rede�ne our rules:

De�nition 11.10. Rule 1: a transaction is well-formed if:

� Before performing a read action on an object, it has been previously locked, exclusively or shared
(but better if it is shared locked, allowing for increased performance).

� Before performing a write action on an object, it has been previously exclusively locked.

Rule 2: a schedule is legal if:

� No exclusive lock is performed on a locked (exclusive or shared) object, until it has been unlocked.

� No lock (exclusive or shared) is performed on a exclusively locked object, until it has been unlocked.

This rule can be summarize in a compatibility matrix, which shows which state changes are allowed:
Tj asks for

Ti holds
S X

S True False
X False False

Rule 3: a schedule respect the 2PL protocol if for any two-phase locked transaction Ti, no action
xli (A) or sli (A) is preceded by an action ui (B) for any object B.

Notice that there are transactions that read and write the same object, so what should we do about this?
There are two main options:

1. We can just request an exclusive lock from the beginning.

2. We can use an upgrade scheme, in which a shared lock is acquired if we are unsure if we will need to write
the object later. When we need to write it, we 'upgrade' the shared lock to be an exclusive lock. This can
be technically achieved by allowing transactions to have two locks on the same object: one shared and
one exclusive; or by releasing the shared lock and getting the exclusive lock7.

7Note that in this case we have to slightly modify Rule 3 to let transactions release shared locks to get exclusive locks in the

locking phase.

75

11.4 More types of locks 11 CONCURRENCY CONTROL

11.4 More types of locks

11.4.1 Increment lock

We can de�ne a new action, which is an atomic increment action, as

INi (A, k) ≡ {Read (A) ;A← A+ k;Write (A)} .

A property of these actions is that they are commutative, so they do not con�ict between each other, even
though they involve writing the objects. This allows for more �exibility, because we can de�ne a new lock, the
increment lock:

� INCREMENT-LOCK(A), ili (A): lock object A to perform increment actions on it.

And we have to, again, rede�ne the rules:

De�nition 11.11. Rule 1: a transaction is well-formed if:

� Before performing a read action on an object, it has been previously locked, exclusively or shared
(but better if it is shared locked, allowing for increased performance).

� Before performing a write action on an object, it has been previously exclusively locked.

� Before performing an increment action on an object, it has been previously increment-locked.

Rule 2: a schedule is legal if:

� No exclusive lock is performed on a locked (exclusive, increase or shared) object, until it has been
unlocked.

� No lock (exclusive, increase or shared) is performed on a exclusively locked object, until it has been
unlocked.

� An increase lock can only be performed on unlocked objects or increase-locked objects.

This rule can be summarize in a compatibility matrix, which shows which state changes are allowed:
Tj asks for

Ti holds

S X I
S True False False
X False False False
I False False True

Rule 3: a schedule respect the 2PL protocol if for any two-phase locked transaction Ti, no action
xli (A), sli (A) or ili (A) is preceded by an action ui (B) for any object B.

11.4.2 Update lock

A common deadlock problem that arises when we use upgrading shared locks is depicted below:

T1 T2

sl1 (A)
sl2 (A)

lx1 (A)
lx2 (A)

In this case, both transactions are waiting for the other to release the object A to be able to lock it exclusively,
so there is a deadlock.

The solution implies decreasing the level of concurrency, but it is worthy to avoid such problematic cases.
We de�ne a new lock, in which a transaction which is unsure about if it will need to write an object, it acquire
an update lock instead of the shared lock, and upgrades can only be made from this lock:

� UPDATE-LOCK(A), uli (A): lock object A and might upgrade later.

76

11.5 Lock granularity 11 CONCURRENCY CONTROL

Note that if an object is shared-locked, it can be update-locked, but not the other way round (if we allow this,
the behavior would not change).

Let's rede�ne our three rules for this case:

De�nition 11.12. Rule 1: a transaction is well-formed if:

� Before performing a read action on an object, it has been previously locked, exclusively, update or
shared (but better if it is shared locked, allowing for increased performance).

� Before performing a write action on an object, it has been previously exclusively locked.

� Before upgrading a lock, it has been previously update-locked.

Rule 2: a schedule is legal if:

� No exclusive lock is performed on a locked (exclusive, update or shared) object, until it has been
unlocked.

� No lock (exclusive, update or shared) is performed on a exclusively locked object, until it has been
unlocked.

� An update lock can only be performed on unlocked objects or shared-locked objects.

This rule can be summarize in a compatibility matrix, which shows which state changes are allowed:
Tj asks for

Ti holds

S X U
S True False True
X False False False
U False False False

Note that in this case, an object can be locked in several modes (for instance, it can be locked in shared
and update mode at the same time), so transitions are based on the most restrictive lock mode.
Rule 3: a schedule respect the 2PL protocol if for any two-phase locked transaction Ti, no action
xli (A) or sli (A) is preceded by an action ui (B) for any object B.

11.5 Lock granularity

We have been talking about locking objects, but we have not speci�ed which are these objects. They can be
tuples, pages, relations,... In all cases the scheme works, but choosing the appropriate size for what we are
locking is obviously going to a�ect performance. For instance:

� If we lock at tuple level, we gain in concurrency capabilities, but we will need to increase the e�orts to
control the concurrent access. For example, the memory needed to store all locks would increase.

� If we lock at relation level, it is easier to address the concurrency issues, but we lose many concurrency
capabilities because as soon as some transaction is trying to modify one tuple of one relation, the whole
relation would be inaccessible for other transactions.

We can de�ne multi-granular locks, which can specify at what level they want to lock the objects involved.
For this, we de�ne intentional locks, which can be of any of the types we have seen, but with a slightly

di�erent meaning:

� An intentional lock on an object, A, is trying to obtain a lock on a subobject, As.

� Intentional locks indicate the type of the lock of the subobjects.

Example 11.8. Imagine we have the relation R1 which has four tuples. If transaction 1, T1, wants to shared-
lock the second tuple, t2, we need to obtain an intentional shared-lock on R1 and then a shared-lock on t2. This
is depicted below:

77

11.5 Lock granularity 11 CONCURRENCY CONTROL

Now, imagine T2 wants a shared-lock in the whole relation, then, it will can be acquired, because the
compatibility matrix allows it. But it wanted an exclusive-lock in the whole relation, it would need to wait until
the locked tuple is unlocked.

Example 11.9. Another example is starting with the previous one:

Now, imagine T2 wants to exclusively lock t4: this can be done, because t4 is unlocked. In this case, T2

needs to ask for an intentional exclusive lock on R1, which would be granted because the relation R1 is not
fully locked. Then at tuple level, T2 would ask for an exclusive lock for t4, an it would be granted because it is
unlocked:

Again, we can build the compatibility matrix for this new kind of locks:

Tj asks for

Ti holds

IS IX S SIX X
IS True True True True False
IX True True False False False
S True False True False False
SIX True False False False False
X False False False False False

� IS, intentional shared lock: lock some subobjects in share mode.

� IX, intentional exclusive lock: lock some subobjects in exclusive mode.

� S, shared lock: lock an object in shared mode.

� SIX, shared intentional exclusive lock: lock an object in shared mode and some subobjects in exclusive
mode.

� X, exclusive lock: lock an object in exclusive mode.

Also, there are restrictions in which states can subobjects have in terms of the states of the parent object:

78

11.5 Lock granularity 11 CONCURRENCY CONTROL

Parent state Child possible states

IS IS,S
IX IS,S,IX,X,SIX
S none
SIX X,IX
X none

The rules to follow are the following:

1. Follow the multiple granularity compatibility matrix.

2. Lock root of tree �rst.

3. Node Q can be locked by Ti in S or IS only if parent (Q) is locked by Ti in IX or IS.

4. Node Q can be locked by Ti in X,SIX,IX only if parent (Q) is locked by Ti in IX,SIX.

5. Ti is two-phase.

6. Ti can unlock node Q only if none of Q's children are locked by Ti.

Example 11.10. Let's do some practice.
1) Start with this setup:

Can T2 access object f22 in mode X? If so, what locks would T2 get?
Yes, it can, because all the locks in the sequence are compatible with another IX lock and f2,2 is unlocked:

2) Start with this setup:

Can T2 access object f22 in mode X? If so, what locks would T2 get?
No, it cannot, because parent t2 is in X mode, so it cannot be locked in IX mode by T2.
3) From the last setup: can T2 access object f3,1 in X mode? What locks would T2 get?
Yes, it can, because f3,1 is unlocked, its parent t3 is unlocked, and its parent is in IX state, compatible with

another IX state:

79

11.5 Lock granularity 11 CONCURRENCY CONTROL

4) Start with this setup:

Can T2 access object f2,2 in S mode? What locks would T2 get?
Yes, because SIX and IX and compatible with IS:

5) In the previous setup: can T2 access object f2,2 in X mode? What locks would T2 get?
No, because SIX is not compatible with IX.

80

12 DISTRIBUTED DATABASES

Part VII

Distributed Databases

12 Distributed databases

Distributed database management systems distribute and replicate data over multiple machines to try to meet
the availability, durability, performance, regulatory amd scale requirements of large organizations, subject to
physics.

A distributed database does two things:

� Distribution: place partitions of data on di�erent machines.

� Replication: place copies of data on di�erent machines.

The goal is to o�er the same functionality and transactional semantics as a RDBMS with distributed features.
The reality is that there need to be done concessions in terms of functionality, transactional semantics and

performance.
There are three main challenges in distributed databases, which are how to distribute the data, how to access

the data and how to perform distributed transactions.

De�nition 12.1. A shard is a horizontal partition of data in a database.

12.1 Data distribution

There are several ways to distribute the data:

� Range distribution: tables are partitioned by a distribution key, which is usualy part of a primary key.
Each shard contains a range of the values.

Example 12.1. Imagine a CUSTOMER table that is distributed in two servers: in one server we maintain
all names starting by a letter in the range A-N and in the other server all starting with a letter in the
range M-Z.

� Hash distribution: there two ways to implement this:

� Each shard contains a modulo of a hash value.

� Each shard contains a range of hash values.

In the context of data distribution, it is usually desirable to maintain approximately the same amount of data
in each node. To achieve this, rebalancing is used. Rebalancing encompasses:

� Moving shards to achieve better data distribution across nodes.

� Splitting shards to achieve better data distributions across nodes.

Another important concept is that of co-location, which makes use of the fact that some tables share some
attributes. If a shared attribute is related to the distribution key, then we can store di�erent tables in a
distributed manner, in such a way that if we perform a join between these tables using this attribute, we
minimize the interaction between tables from di�erent nodes.

Other times, for the same purpose of increasing the e�ciency of distributed joins it is useful to replicate
small tables to enable fast joins, foreign keys and other operations. This technique is called reference tables.

There are more ways to tackle data distribution:

� Use random distributions to distribute the data.

� Use list distribution, assigning labels to the di�erent partitions.

� Use spatial distribution, locating data in the servers where it will be of use.

81

12.2 Distributed data access: distributed SQL 12 DISTRIBUTED DATABASES

12.2 Distributed data access: distributed SQL

To scale query throughput linearly with the number of nodes, queries should only access one node. The
techniques of co-location and reference table enable relatively complex queries. This idea of using the nodes
information inside the queries to only access the desired nodes is called routing queries.

Example 12.2. A routing query trying to access only the node where the distribution key is 36:

INSERT INTO d i s t 1 (dist_key , va lue) VALUES(36 , 1 1) ;

SELECT *

FROM d i s t 1
WHERE dist_key=36 AND value <11;

UPDATE d i s t 1
SET value=3
WHERE dist_key=36 AND value <11;

Nonetheless, the relational algebra can be extended to work in distributed system: it is called the multi-
relational algebra, and it adds to the usual relational algebra the operations8:

� COLLECT: takes data from several nodes and single output data stream combining all of them.

� REPARTITION: takes data from some nodes and sends it to other nodes.

� BROADCAST: sends its input rows to multiple consumers on demand. Each consumer gets all of the
rows.

As in standard SQL, in distributed SQL it is needed to perform logical planning of the queries before executing
them, with the need that the �nal result is the same as it would be if all data were in one node.

Example 12.3. Imagine we want to compute the mean of an attribute in a table which is distributed in di�erent
nodes. The steps to follow would be:

1. In each node: SUM(A) and COUNT(A)

2. In requesting node:

(a) COLLECT all data: sum_ = SUM(SUM(N->T.A), N in Nodes), count_ = SUM(COUNT(N->T.A),
N in Nodes)

(b) mean = sum_ / count_

Also, di�erent plans can be de�ned and the best one should be chosen following some optimization criteria.

Co-located joins

Imagine we have the query:

SELECT d i s t 1 . dist_key , count (*)
FROM d i s t 1
JOIN d i s t 2 ON (d i s t 1 . dist_key = d i s t 1 . dist_key)
WHERE d i s t 2 . va lue < 44
GROUP BY d i s t 1 . dist_key ;

One way to do this is:

1. In each node:

(a) Scan dist1

(b) Scan dist2 and �lter dist2.value < 44

8The de�nitions have been taken from MSQLS Docs, but the names are di�erent.

82

https://learn.microsoft.com/en-us/sql/relational-databases/showplan-logical-and-physical-operators-reference?view=sql-server-ver16

12.2 Distributed data access: distributed SQL 12 DISTRIBUTED DATABASES

2. In requesting node:

(a) Collect all dist1

(b) Collect all �ltered dist2

(c) Perform the join

(d) Aggregate

But as we are using the distribution key for joining, we know that the tables that will join are stored together,
so we can make use of the co-location by changing the plan to:

1. In each node:

(a) Scan dist1

(b) Scan dist2 and �lter dist2.value < 44

(c) Perform the join

(d) Aggregate

2. In requesting node:

(a) Collect the values

For this changes to work, we are using that: �lter is commutative with collect, group by dist_key is commutative
with collect and join is co-located, so it is commutative with collect.

When we do this, we are working with much smaller tables, thus reducing the response time.

Re-partition joins

Now imagine the query:

SELECT d i s t 1 . dist_key , count (*)
FROM d i s t 1
JOIN d i s t 2 ON (d i s t 1 . dist_key = d i s t 2 . other_key
WHERE d i s t 2 . va lue < 44
GROUP BY d i s t 1 . dist_key ;

In this case, the initial plan also work, but again we can do better repartitioning the dist2 tables to the
nodes where they will be needed. This might seem like too heavy work to do, but if the tables are large enough,
the whole relations might not even �t in only one node, so this can be the only way to be able to produce the
response. The alternative plan is:

1. In each node:

(a) Scan dist2

(b) Filter dist2.value < 44

2. In each node:

(a) Repartition �ltered tuples from dist2 with corresponding other_key to dist_key of this node

(b) Scan dist1

(c) Perform the join

(d) Aggregate

3. In requesting node:

(a) Collect the values

83

12.2 Distributed data access: distributed SQL 12 DISTRIBUTED DATABASES

Broadcast joins

Now, imagine the query:

WITH top10 AS (
SELECT dist_key , count (*)
FROM d i s t 1
GROUP BY 1
ORDER BY 2
LIMIT 10
)

SELECT *

FROM d i s t 2
WHERE other_key IN (SELECT dist_key FROM top10) ;

The naïve plan is:

1. In each node:

(a) Scan dist1

(b) Scan dist2

2. In requesting node

(a) Collect dist1

(b) Aggregate dist1

(c) Sort/limit dist1

(d) Collect dist2

(e) Perform the join

But this can be improved by creating a subplan that handles order/limit under join and broadcasting the
subplan to pull the collect above the join. The idea is that TOP10 among all the data is the same that the
TOP10 among all the TOP10s in each node:

1. In each node:

(a) Scan dist1

(b) Preaggregate: get TOP10 of the node

2. In requesting node:

(a) Collect TOP10 of each node

(b) Merge all TOP10

(c) Sort/limit and get �nal TOP10

(d) Broadcast this TOP10 to all nodes

3. In each node:

(a) Scan dist2

(b) Join dist2 with broadcasted TOP10

4. In requesting node:

(a) Collect the values

84

12.3 Distributed transactions 12 DISTRIBUTED DATABASES

Observations

As we have seen, the query plans depend heavily on the distribution key.
Runtime also depends on the query, data, the data size, network speed,...
This menas distributed databases require adjusting the distribution keys and queries to each other to achieve

high performance.

12.3 Distributed transactions

Ideally, we have ACID transactions: Atomicity, Consistency, Isolation and Durability.
The main distribution challenges are:

� Atomicity: commit on all nodes or none of them.

� Isolation: see other distributed transactions as commited/aborted

Additionally, it is important to have a mechanism for distributed deadlock detection.

12.3.1 Atomicity

Atomicity is achieved through 2PC (2-Phase Commit):

Phase 1: Store transactions on all nodes

Phase 2: Store �nal commit decision and

(a) If success: commit all stored transactions

(b) If error: abort all prepared transactions

Secret phase 3 (Recovery phase): Commit/abort prepared transactions after system failure

12.3.2 Isolation

If we query di�erent nodes at di�erent times, we may see a concurrent transaction as commited on one node,
but not yet committed on another one.

Distributed snapshot isolation means we have the same view of what is commited and what not on all
nodes.

We must also ensure consistency: any preceding write is seen as committed.
A common approach is to add a timestamp to each query, so queries see all commits with lower timestamps.
There are di�erent ways of dealing with clock synchronization:

� TrueTime: synchronize clocks using GPS/atomic clocks. Commits pause until all clock move past commit
time.

� Clock-SI: queries collect current time from all nodes involved, pick the highest timestamp and wait for
it to pass.

� HLC (Hybrid Logical Clocks): they are increased whenever an event occurs or a message from another
node is received with a higher timestamp.

12.3.3 Considerations

Fully resolving a 2PC might take time in case of system failure.
Distributed deadlock detection is essential to stability, but not always implemented.
Snapshot isolation avoids seeing partially committed transactions, but at a cost, and read-your-writes con-

sistency can be at risk.

85

12.4 Replication 12 DISTRIBUTED DATABASES

12.4 Replication

Replication means to store the same data in di�erent nodes. It can be useful for:

� Availability: resume from replica in case of node failure.

� Durability: restore from replica in case of disk failure.

� Read throughput: divide reads across read replicas.

� Read latency: local/nearby replica gives lower read latency.

� Write latency: local/nearby replica gives lower write latency.

12.4.1 Quorums

The basic idea is to read from R nodes and write to W nodes, where R+W>N, being N the total number of
nodes.

The challenge is to apply events in the same order wverywhere.

12.4.2 Follow the leader

We can also assign a temporary leader to serialize writes e�ciently. This leader would then feed the rest of the
nodes with the new data.

If one node fails (standby fail), the leader will continue writing to other replica.
If the leader fails (primary fail), a failover is initiated, a replica is promoted to leader and the rest of the

replicas follow the new leader.

12.4.3 N-directional

All nodes accept writes and then decide how to reconcile con�icting changes.

12.5 CAP theorem

Basically, the CAP theorem states that a database can only have two out of the three properties: Consistency,
Availability and Partitioning. In the case of distributed databases, partitioning is a must, so one must decide
between C and A (note, nonetheless, that even though the theorem ensure that one cannot get the three
properties in their most strict form, it is possible to have them in relaxed, yet good, ways). So, basically,
according to this theorem, we need to decide between:

� Availability (AP): keep writing to a minority of nodes, and the majority does not see it.

� Consistency (CP): make writes/reads temporary unavailable because consistency must be preserved.

But this is an incomplete picture of the trade-o�s that appear in a distributed database.

12.6 PACELC theorem

This is an improved version of the CAP theorem, but is still oversimpli�ed:

� If network Partition: choose Availability or Consistency.

� Else: choose Latency or Consistency.

86

12.7 More trade-o�s 12 DISTRIBUTED DATABASES

12.7 More trade-o�s

� Consistency: read-your-writes, no lost updates, linearizability

� Availability: for reads, for writes, handle availability zone failure

� Partition-tolerance: for reads, for writes.

� Durability: node failure does not result in data loss, writes are archived in a timely manner.

� Low latency: low read latency, low write latency, global latency VS local latency.

� Complexity: dependencies on other systems, multiple node types, optimizations.

87

REFERENCES REFERENCES

References

[1] M. M. Astrahan, M. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Gri�ths, W. F. King,
R. A. Lorie, P. R. McJones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade, and V. Watson. System
r: Relational approach to database management. ACM Transactional Database Systems.

[2] Hector Garcia-Molina, Je�rey Ullman D, and Jennifer Widom. Database Systems: The Complete Book. 01
2002.

[3] Mahmoud Sakr. Infoh417 database systems architecture. Lecture Notes.

[4] Jan Van den Bussche and Stijn Vansummeren. Translating sql into the relational algebra.

88

	I Query Planning: Translating SQL into Relational Algebra
	Relational Algebra
	The extended relational algebra
	Relational algebra expressions

	Translating SQL into Relational Algebra
	SELECT-FROM-WHERE statemets without subqueries
	Normalizing WHERE-subqueries into EXISTS and NOT EXISTS form
	Translating SELECT-FROM-WHERE subqueries
	De-correlation of subqueries appearing in a conjunctive WHERE condition
	Translating
	De-correlating EXISTS subqueries
	De-correlating NOT EXISTS subqueries
	Translating the Select-list

	Flattening subqueries in bag-based relations

	II Query Optimization
	System-R
	Architecture Components
	Query language
	Data manipulation
	Data definition
	Data Control

	Catalogues
	Cursors
	Clustering images
	Optimizer
	Simple query optimization
	Join query optimization
	Optimized Packages

	PostgreSQL in relation to System R

	Query Optimization
	Cost-based query optimization
	Viewing query evaluation plans
	Generating equivalent expressions
	Enumeration of equivalent expressions
	Cost estimation
	Choice of execution plan
	Best join-order problem

	Statistics for cost estimation
	Histograms
	Estimation of selection size
	Estimation of the size of joins

	III Indexing
	Conventional indexes
	Sparse second level index
	How to deal with duplicate keys.
	How to delete records
	Deletion from sparse index with no duplicates
	Deletion from dense index

	How to insert records
	Secondary indexes
	Duplicate values and secondary indexes

	B-Trees
	Lookup in BTree
	Range queries
	Insertion into a BTree
	Deletion from a BTree

	IV Physical Query Plans
	Physical Query Plans
	Computing joins
	Factors that affect performance

	V Extensibility
	Extensible databases: PostgreSQL
	Types
	Base types
	Container types
	Domains
	Pseudo-types
	Polymorphic types

	Functions
	SQL functions
	Procedural functions
	Internal functions
	C-Language functions
	Function volatility categories

	Procedures
	Interfacing extensions to indexes
	Steps to create a PostgreSQL extension

	VI Failure Recovery and concurrency control
	Failure recovery
	Key problem: unfinished transactions
	Logging
	Undo logging
	Redo logging
	Checkpointing with undo logging
	Checkpointing with redo logging
	Undo/Redo logging

	Concurrency control
	Schedules: serial, serializable and conflict-serializable
	How to enforce serializability: locking
	Option 1: let luck be our friend
	Option 2: a locking protocol

	Shared locks
	More types of locks
	Increment lock
	Update lock

	Lock granularity

	VII Distributed Databases
	Distributed databases
	Data distribution
	Distributed data access: distributed SQL
	Distributed transactions
	Atomicity
	Isolation
	Considerations

	Replication
	Quorums
	Follow the leader
	N-directional

	CAP theorem
	PACELC theorem
	More trade-offs

