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This is a summary of the course Big Data Management taught at the Universitat Politècnica de Catalunya by
Professor Alberto Abelló in the academic year 22/23. Most of the content of this document is adapted from
the course notes by Abelló and Nadal, [1], so I won't be citing it all the time. Other references will be
provided when used.
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1 INTRODUCTION TO BIG DATA

1 Introduction to Big Data

1.1 Recognise the relevance of data driven decision making

Data driven decision making is the strategy of using data to make decisions, in order to improve the chances
of obtaining a positive outcome. It has been gaining importance in the past years, mainly because the data
generation rate is increasing rapidly, allowing greater analyses for those who are able to leverage all this data.

The ability to collect, store, combine and analyze relevant data enables companies to gain a competitive
advantage over their competitors which are not able to take on these task.

In a nutshell, it is the con�uence of three major socio-economic and technological trends that makes data
driven innovation a new phenomenon:

� The exponential growth in data generated and collected.

� The widespread use of data analytitcs, including start-ups and small and medium entreprises.

� The emergence of a paradigm shift in knowledge.

1.2 Identify the three high level categories of analytical tools

Business Intelligence (BI) is the concept of using dashboard to represent the status and evolution of com-
panies, using data from the di�erent applications used by the production systems of the company, which needs
to be processed with ETL (Extract, Transform, Load) pipelines into a Data Warehouse. This data is then
modelled into data cubes, that are queried with OLAP (OnLine Analytic Processing) purposes. The analytical
tools that this setup allows are three:

1. Static generation of reports.

2. Dynamic (dis)aggregation and navigation by means of OLAP operations.

3. Inference of hidden patterns or trends with data mining tools.

1.3 Identify the two main sources of Big Data

The two main sources of Big Data are:

� The Internet, which shifted from a passive role, where static hand-crafted contents were provided by
some gurus, to a dynamic role, where contents can be easily generated by anybody in the world, specially
through social networks.

� The improvement of automation and digitalization on the side of industries, which allows to monitor
many relevant aspects of the company's scope, giving rise to the concept of Internet of Things (IoT), and
generating a continuous �ow of information.

1.4 Give a de�nition of Big Data

Big Data is a natural evolution of Business Intelligence, and inherits its ultimate goal of transforming raw data
into valuable knowledge, and it can be characterized in terms of the �ve V's:

� Volume: there are large amount of digital information produced and stored in new systems.

� Velocity: the pace at which data is generated, ingested and processed is very fast, giving rise to the
concept of data stream (and two related challenges: data stream ingestion and data stream processing).

� Variety: there are multiple, heterogeneous data formats and schemas, which need to be dealt with.
Special attention is needed for semi-structured and unstructured external data. The data variety challenge
is considered as the most crucial challenge in data driven organizations.

� Variability: the incoming data can have an evolving nature, which the system needs to be able to cope
with.

� Veracity: the veracity of the data is related to its quality, and it makes it compulsory to develop Data

Governance practices, to e�ectively manage data assets.
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1.5 Compare traditional data warehousing against Big Data management1 INTRODUCTION TO BIG DATA

1.5 Compare traditional data warehousing against Big Data management

In traditional business intelligence, data from di�erent sources inside the company is ETL-processed into the
data warehouse, which can then be analyzed using the three types of analyses we've seen (Reports, OLAP, DM),
in order to extract useful information that ultimately a�ects the strategy of the company. This is summarized
in Figure 1. As highlighted in the �gure, the data warehousing process encompasses the ETL processes and the
Data Warehouse design and maintenance.

Figure 1: Business Intelligence Cycle.

In the context of big data, the focus is shifted, from analyzing data from just inside sources, to data from all
types of heterogeneous sources. In this setup, instead of doing an ETL process, the data is collected, through
the process of ingestion, and stored into a Data Lake (from which analysts would extract data and perform
all necessary transformations a posteriori) or a Polystore (which is a DBMS built on top of di�erent other
technologies, to be able to cope with heterogeneous data). Whatever the storing decision, Big Data Analytics
are then done on this data, di�erenciating:

� Small analytics: querying and reporting the data and OLAP processing.

� Big Analytics: performing data mining on the data.

This process is depicted in Figure 2. In this diagram, we see that the Big Data Management consists of the
task of ingestion, together with the design and maintenance of the Data Lake / Polystore.
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1.6 Distinguish descriptive, predictive and prescriptive analysis 1 INTRODUCTION TO BIG DATA

Figure 2: Big Data Cycle.

Thus, the di�erences are:

� Data Warehousing does the ETL process over the data produced by the company, while Big Data Man-
agement does the process of ingestion, by which data from internal and external sources is collected.

� Data Warehousing uses a Data Warehouse to store the ETLed data and the analyses need to be designed
with the structure of this stored data. In contrast, in Big Data Management, the storing facility can cope
with the data as is, so the analyses have a wider scope, but they need to correctly treat the data for each
analysis conducted.

� Thus, as can be inferred from the previous paragraphs, Big Data Management provides a more �exible
setup than Data Warehousing, at the expense of needing to perform ad-hoc transformation for each
analysis, which can lead to repetition and a decrease in performance. Nonetheless, this decrease is not really
a drawback, because some big data analytics tasks cannot be undertaken without this added �exibility.

1.6 Distinguish descriptive, predictive and prescriptive analysis

� Descriptive analysis: uses basic statistics to describe the data. In a DW environment, OLAP tools
are used for this purpose, in an interactively manner, modifying the analysis point of vire to facilitate
the understanding and gain knowledge about the stored data. Basically, understand past data (what
happened, when happened, why it happened).

� Predictive analysis: uses a set of statistical techniques to analyze historical facts, with the aim of
making predictions about future events. Basically, compare incoming data to our knowledge of past data,
in order to make predictions about the future (what will happen).

� Prescriptive analysis: takes as input the predictions of previous analyses to suggest actions, decisions
and describe the possible implications of each of them. Basically, use predictions obtained via predictive
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analysis to take action and make decisions, as well as to estimate the impact of these decisions in the
future (how we should respond to this situation).

1.7 Explain the novelty of Cloud Computing

The novelty of cloud computing is the same as when electricity shifted from being generated by each company to
be centrally generated, bene�ting from scale economies and improving the e�ciency of the electricity generation.
In the case of Cloud Computing, the shift is from companies having their own hardware and software, to an
environment in which these resources are o�ered by a third company, which leverages again the economies of scale
and the possibility to allocate resources when needed, increasing the overall e�ciency of the tech industries and
reducing the costs of each company, as they now don't need to buy expensive pieces of hardware and software,
maintain them, etc.

1.8 Justify the bene�ts of Cloud Computing

� It eliminates upfront investment, as it is not needed to buy hardware anymore.

� You pay for what you use, so costs are reduced because e�cient allocation is a complex task to overcome.

� The main bene�t comes from the aforementioned economy of scale, that allows to reduce costs and improve
e�ciency. A machine hosted in-house is most of the time underused, because companies don't usually
require it being 100% operational all the time. However, when the machine is available for thousand or
millions of customers, it will almost always be required to be working.

� Customers can adapt their costs to their needs at any time.

� There is no need to manage, maintain and upgrade hardware anymore.

1.9 Explain the link between Big Data and Cloud Computing

Cloud computing and big data are closely related, and in many ways, cloud computing has enabled the growth
and adoption of big data technologies.

One of the main advantages of cloud computing is its ability to provide �exible and scalable computing
resources on demand. This is especially important for big data, which requires signi�cant computing power to
process and analyze large volumes of data. Cloud computing allows organizations to easily spin up large-scale
computing clusters and storage systems to handle big data workloads, without the need to invest in expensive
on-premises infrastructure.

In addition to providing scalable computing resources, cloud computing also o�ers a wide range of data
storage and processing services that can be used for big data workloads. Cloud providers o�er a variety of
data storage services, such as object storage, �le storage, and database services, that can be used to store and
manage large volumes of data. Cloud providers also o�er big data processing services, such as Apache Hadoop,
Apache Spark, and machine learning tools, which can be used to analyze and extract insights from big data.

Cloud computing also provides the ability to easily integrate and share data between di�erent systems and
applications, both within an organization and with external partners. This is important for big data, which
often requires data from multiple sources to be combined and analyzed to gain insights.

Overall, cloud computing has played a key role in enabling the growth and adoption of big data technologies,
by providing �exible and scalable computing resources, a wide range of data storage and processing services,
and the ability to easily integrate and share data between di�erent systems and applications.

1.10 Distinguish the main four service levels in Cloud Computing

The main four service levels are:

� Infrastructure as a Service (IaaS): provides virtualized computing resources, such as virtual machines,
storage, and networking, which can be provisioned and managed through an API or web console.

� Platform as a Service (PaaS): provides a platform for building and deploying applications, including
development tools, runtime environments, and middleware, which can be accessed through an API or web
console.
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� Software as a Service (SaaS): provides access to software applications over the internet, which are
hosted and managed by a third-party provider, and can be accessed through a web browser or API.

� Business as a Service (BaaS): This is a type of cloud computing service that provides businesses
with access to a range of software tools and services, such as customer relationship management (CRM)
systems, enterprise resource planning (ERP) software, and human resources management tools. BaaS
allows businesses to outsource the management and maintenance of these systems to a third-party provider,
freeing up resources and allowing the business to focus on their core operations. BaaS can be a cost-e�ective
way for businesses to access enterprise-level software tools without the need to invest in on-premises
infrastructure and maintenance. This is, a whole business process is outsourced, for example using PayPal
as a paying platform frees the company from this process.

But there are more services o�ered by Cloud Computing:

� Database as a Service (DBaaS): speci�c platform services providing data management functionalities.

� Container as a Service (CaaS): allows applications to be packaged into containers, which can be run
consistently across di�erent environments, such as development, testing, and production.

� Function as a Service (FaaS): creates small stand-alone pieces of software that can be easily combined
to create business �ows in interaction with other pieces from potentially other service providers.

� Serverless computing: allows developers to build and run applications without managing servers, by
providing an event-driven computing model, in which code is executed in response to speci�c triggers.

� Data analytics and storage: provides tools for storing and analyzing large volumes of data, such as
data warehouses, data lakes, and analytics tools, which can be accessed through APIs or web consoles.

� Machine learning and arti�cial intelligence: Provides tools and services for building, training, and
deploying machine learning models, such as pre-trained models, APIs for image recognition and natural
language processing, and tools for custom model development.
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2 Big Data Design

2.1 De�ne the impedance mismatch

Impedance mismatch often arises when data is passed between di�erent layers of an application, such as between
the front-end user interface and the back-end database, or between di�erent applications that need to exchange
data. The data structures used in each layer or system may be di�erent, which can cause issues with data
mapping, performance, and scalability.

For example, if a front-end application requires data that is stored in a relational database, the application
may need to perform complex queries to retrieve and transform the data into a format that can be used by the
user interface. This can lead to performance issues and increased complexity in the application code. Similarly,
if di�erent applications or services use di�erent data formats or structures, it can be di�cult to exchange data
between them, which can lead to integration issues and increased development time.

To address impedance mismatch, software developers often use techniques such as object-relational mapping
(ORM) to map data between di�erent layers of an application, or use standard data formats such as JSON or
XML to enable data exchange between di�erent systems. These techniques can help to simplify data mapping,
improve performance, and increase the scalability of the system.

2.2 Identify applications handling di�erent kinds of data

� Relational data (OLTP): Relational databases are commonly used for online transaction processing
(OLTP) applications, such as e-commerce websites, banking applications, and inventory management
systems. Examples of applications that use relational databases include Oracle, MySQL, PostgreSQL,
and Microsoft SQL Server.

� Multidimensional data (OLAP): Multidimensional databases are commonly used for online analyt-
ical processing (OLAP) applications, such as data warehousing, business intelligence, and data mining.
Examples of applications that use multidimensional databases include Microsoft Analysis Services, IBM
Cognos, and Oracle Essbase.

� Key-value data: Key-value databases are commonly used for high-performance, highly scalable appli-
cations, such as caching, session storage, and user pro�les. Examples of applications that use key-value
databases include Redis, Amazon DynamoDB, and Apache Cassandra.

� Column-family data: Column-family databases are commonly used for applications that require fast
reads and writes on a large-scale, such as content management systems, social networks, and recommenda-
tion engines. Examples of applications that use column-family databases include Apache HBase, Apache
Cassandra, and ScyllaDB.

� Graph data: Graph databases are commonly used for applications that involve complex relationships
between data, such as social networks, fraud detection, and recommendation engines. Examples of appli-
cations that use graph databases include Neo4j, OrientDB, and Amazon Neptune.

� Document data: Document databases are commonly used for applications that require �exible, dynamic
data structures, such as content management systems, e-commerce platforms, and mobile applications.
Examples of applications that use document databases include MongoDB, Couchbase, and Amazon Doc-
umentDB.

Note that many applications use multiple types of data models, depending on the nature of the data and the
requirements of the application. For example, a social network might use a graph database to store social
connections, a column-family database to store user data, and a key-value database to cache frequently accessed
data.

2.3 Name four di�erent kinds of NOSQL systems

� Key-Value: stores data as a collection of key-value pairs. Each key is associated with a value, and values
can be retrieved and updated by their corresponding keys. Key-value databases are simple and highly
scalable, making them well-suited for applications that require high performance and low latency.
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� Wide-column (Column-family): stores data as a collection of columns grouped into column families.
Each column family is a group of related columns, and each column consists of a name, a value, and a
timestamp. Column-family databases are optimized for storing large amounts of data with fast writes
and queries, making them well-suited for applications that require high write and query throughput. Such
grouping of columns directly translates into a vertical partition of the table, and entails the consequent
loss of schema �exibility.

� Graph: stores data as nodes and edges, representing complex relationships between data. Nodes represent
entities, such as people, places, or things, and edges represent relationships between entities. Graph
databases are optimized for querying and analyzing relationships between data, making them well-suited
for applications that require complex querying.

� Document: stores data as documents, which can be thought of as semi-structured data with a �exible
schema. Each document consists of key-value pairs, and documents can be grouped into collections.
Document stores are optimized for storing and querying unstructured and semi-structured data, making
them well-suited for applications that require �exibility in data modeling.

2.4 Explain three consequences of schema variability

Schema variability refers to the dynamic and �exible nature of data models in NoSQL databases. Unlike
relational databases, NoSQL databases allow for the schema to be �exible and adaptable, which means that the
data structure can evolve over time without requiring changes to the database schema. This allows for greater
agility in data modeling, as it makes it easier to add or remove �elds or change the data structure as needed.

Its three main consequences are:

� Gain in �exibility: allowing schema variability makes the system more �exible to cope with changes in
the data.

� Reduced data semantics and consistency: With a �exible schema, it is possible to store data that
does not conform to a prede�ned structure. This can lead to inconsistencies in data quality and make it
more di�cult to enforce data constraints, such as data types or referential integrity.

� Data independence principle is lost: allowing schema variability can be seen as a departure from
the traditional concept of data independence, which is a key principle of the relational data model. Data
independence refers to the ability to change the physical storage or logical structure of the data without
a�ecting the application programs that use the data. In a relational database, the data is organized into
tables with �xed schema, which allows for greater data independence.

However, in NoSQL databases, schema variability is often seen as a necessary trade-o� for achieving
greater �exibility and scalability. By allowing for a more �exible data model, NoSQL databases can
better accommodate changes to the data structure over time, without requiring changes to the database
schema or application code. This can help improve agility and reduce development time.

That being said, NoSQL databases still adhere to the fundamental principles of data independence in
many ways. For example, they still provide a layer of abstraction between the application and the physical
storage of the data, which helps to insulate the application from changes to the underlying data storage.
Additionally, many NoSQL databases provide APIs that allow for �exible querying and manipulation of
data, which helps to maintain a level of data independence.

Some more consequences:

� Increased data complexity: As the data model becomes more �exible, the data can become more complex
and di�cult to manage. This can lead to increased development and maintenance costs, as well as potential
performance issues.

� Increased development and maintenance costs: As the schema becomes more �exible, the complexity of
the data model can increase, which can result in higher development and maintenance costs.

� Reduced performance: With a more complex data model, queries can become more complex, which can
result in slower query performance. Additionally, since the schema is not �xed, indexing and optimization
become more di�cult, which can further impact performance.
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2.5 Explain the consequences of physical independence

Physical independence is a key principle of the relational data model, which refers to the ability to change the
physical storage of the data without a�ecting the logical structure of the data or the application programs that
use the data. This means that the application should be able to access and manipulate the data without being
aware of the underlying physical storage details, such as the storage medium or the location of the data.

The consequences of physical independence include:

� Reduced maintenance costs: With physical independence, it is easier to change the physical storage of
the data without a�ecting the application. This can help reduce maintenance costs, as it allows for more
�exibility in how the data is stored and accessed over time.

� Improved scalability: Physical independence can help improve scalability, as it allows for the data to be
distributed across multiple physical storage locations or devices, which can help to improve performance
and reduce the impact of failures.

� Greater portability: With physical independence, the application is not tied to a speci�c physical storage
medium or location, which can help improve portability across di�erent hardware or software platforms.

� Improved performance: Physical independence can help improve performance, as it allows for the data to
be stored and accessed in the most e�cient way possible, without being limited by the constraints of a
speci�c physical storage medium or location.

Nonetheless, physical independence enhance the problem of the impedance mismatch, because if data is needed
in a di�erent form from how it is stored, it has to be transformed, introducing a computing overhead. If we
store the data as needed for the application, this problem is reduced, but the physical independence can be lost.

2.6 Explain the two dimensions to classify NOSQL systems according to how they
manage the schema

The schema can be explicit/implicit:

� Implicit schema: schema that is not explicitly de�ned or documented. Instead, the schema is inferred
or derived from the data itself, usually through analysis or observation. This can be useful in situations
where the data is very dynamic or unstructured, and where the structure of the data is not known in
advance.

� Explicit schema: schema that is explicitly de�ned and documented, usually using a schema language or
a data modeling tool. The schema speci�es the types of data that can be stored, the relationships between
di�erent types of data, and any constraints or rules that govern the data.

And it can be �xed/variable:

� Fixed schema: schema that is static and unchanging, meaning that the structure and organization of
the data is prede�ned and cannot be modi�ed. This is common in relational databases, where the schema
is usually de�ned in advance and remains �xed over time.

� Variable schema: schema that is dynamic and �exible, meaning that the structure and organization of
the data can change over time. This is common in NoSQL databases, where the schema may be more
�uid and adaptable to changing data requirements.

Note that this is not a strict classi�cation, but rather two dimension ranges in which a certain schema can lie.

2.7 Explain the three elements of the RUM conjecture

The RUM conjecture suggests that in any database system, the overall performance can be characterized by
a trade-o� between the amount of memory used, the number of reads performed, and the number of updates
performed. Speci�cally, the conjecture states that there is a fundamental asymmetry between reads and updates,
and that the performance of the system is strongly in�uenced by the balance between these two operations. In
general, the more reads a system performs, the more memory it requires, while the more updates it performs,
the more it impacts the system's overall performance.

The RAM conjecture has three main elements:
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� Reads: refer to the process of retrieving data from a database. In general, read-heavy workloads require
more memory to achieve good performance.

� Updates: refer to the process of modifying data in a database. In general, update-heavy workloads require
more processing power and can negatively impact overall performance.

� Memory: refers to the amount of memory available to a system. In general, increasing memory can
improve read-heavy workloads, but may not be as e�ective for update-heavy workloads.

The RUM conjecture is often used to guide the design and optimization of database systems, as it provides a
useful framework for understanding the trade-o�s between di�erent system parameters and performance metrics.
By understanding the RUM trade-o�s, database designers can make informed decisions about how to allocate
resources, optimize queries, and balance the workload of the system.

2.8 Justify the need of polyglot persistence

A polyglot system is a system that uses multiple technologies, languages, and tools to solve a problem. In
the context of data management, a polyglot system is one that uses multiple data storage technologies to store
and manage data. For example, a polyglot system might use a combination of relational databases, NoSQL
databases, and search engines to store di�erent types of data.

Polyglot persistence is the practice of using multiple storage technologies to store di�erent types of data
within a single application. The idea is to choose the right tool for the job, and to use each technology to its
fullest potential. For example, a polyglot system might use a NoSQL database to store unstructured data, a
relational database to store structured data, and a search engine to provide full-text search capabilities.

There are several reasons why polyglot persistence is important:

� Flexibility: Polyglot systems are more �exible than monolithic systems that use a single technology to
store all data. With a polyglot system, you can choose the right tool for the job, and you can adapt to
changing requirements and data formats.

� Performance: Di�erent data storage technologies are optimized for di�erent types of data and workloads.
By using the right tool for the job, you can improve performance and scalability.

� Resilience: Using multiple data storage technologies can improve the resilience of your system. If
one database fails, the other databases can continue to operate, ensuring that your application remains
available and responsive.

� Future-proo�ng: By using multiple data storage technologies, you can future-proof your system against
changing data formats and requirements. As new data types and storage technologies emerge, you can
add them to your system without having to completely overhaul your architecture.

In summary, polyglot persistence is a powerful approach to data management that allows you to use multiple
storage technologies to store and manage di�erent types of data within a single application. By adopting a
polyglot approach, you can improve �exibility, performance, resilience, and future-proo�ng.

2.9 Decide whether two NOSQL designs have more or less explicit/�x schema

There are several factors that can be used to assess the �exibility and explicitness of a schema:

1. Number of tables/collections: A schema with a large number of tables or collections is typically more
explicit and less �exible than a schema with fewer tables or collections. This is because a large number of
tables or collections often implies a more rigid structure, whereas a smaller number of tables or collections
can allow for more �exibility.

2. Number of columns/�elds: A schema with a large number of columns or �elds is typically more explicit
and less �exible than a schema with fewer columns or �elds. This is because a large number of columns
or �elds often implies a more rigid structure, whereas a smaller number of columns or �elds can allow for
more �exibility.
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3. Data types: A schema that uses a large number of data types is typically more explicit and less �exible
than a schema that uses fewer data types. This is because a large number of data types often implies a
more rigid structure, whereas a smaller number of data types can allow for more �exibility.

4. Use of constraints: A schema that uses a large number of constraints (such as foreign keys or unique
constraints) is typically more explicit and less �exible than a schema that uses fewer constraints. This is
because constraints often imply a more rigid structure, whereas a schema with fewer constraints can allow
for more �exibility.

5. Use of inheritance: A schema that uses inheritance (such as table or collection inheritance) is typically
more �exible and less explicit than a schema that does not use inheritance. This is because inheritance
allows for more �exibility in the structure of the data, whereas a schema that does not use inheritance is
typically more explicit in its structure.

Overall, a more explicit schema is one that has a more rigid structure, with more tables, �elds, data types, and
constraints, whereas a more �exible schema is one that has fewer tables, �elds, data types, and constraints, and
may use inheritance to provide more �exibility.

Some examples can be:

� Fixed/Explicit: An example of a �xed/explicit schema in XML format might look like this:

1 <shopping_cart >

2 <customers >

3 <customer >

4 <name >John Smith </name >

5 <email >john@example.com </email >

6 </customer >

7 </customers >

8 <orders >

9 <order >

10 <order_date >2023 -02 -17 </ order_date >

11 <total_price >100.00 </ total_price >

12 </order >

13 </orders >

14 <products >

15 <product >

16 <name >Widget </name >

17 <description >A small , useful tool </ description >

18 <price >10.00 </ price >

19 </product >

20 </products >

21 </shopping_cart >

In this example, the schema is �xed because there are speci�c tables (customers, orders, and products)
and speci�c �elds for each table (such as name and email for customers, and order_date and total_price
for orders). There is no room for variation in the structure of the schema.

� Fixed/Implicit: An example of a �xed/implicit schema in XML format might look like this:

1 <blog >

2 <posts >

3 <post >

4 <title >My First Blog Post </title >

5 <content >This is my first blog post.</content >

6 </post >

7 </posts >

8 </blog >

In this example, the schema is �xed because there is a speci�c table (posts) and speci�c �elds for that
table (such as title and content). However, there is no �xed �eld for metadata such as tags or categories.

� Flexible/Explicit: An example of a �exible/explicit schema in XML format might look like this:

1 <scientific_data >

2 <experiments >

3 <experiment >
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4 <date >2023 -02 -17 </date >

5 <sample_size >100</ sample_size >

6 <measurement_units >mg/L</ measurement_units >

7 </experiment >

8 <experiment >

9 <date >2023 -02 -16 </date >

10 <sample_size >50</ sample_size >

11 <measurement_units >g/L</ measurement_units >

12 </experiment >

13 </experiments >

14 <observations >

15 <observation >

16 <value >10.00 </ value >

17 </observation >

18 <observation >

19 <value >20.00 </ value >

20 </observation >

21 </observations >

22 </scientific_data >

In this example, the schema is �exible because there can be any number of experiments and observations,
and there are no �xed �elds for metadata. However, each table (experiments and observations) and each
�eld (such as date and sample_size) is explicitly de�ned in the schema.

� Flexible/Implicit: An example of a �exible/implicit schema in XML format might look like this:

1 <social_media >

2 <posts >

3 <post >

4 <text >Hello world!</text >

5 </post >

6 </posts >

7 <comments >

8 <comment >

9 <text >Great post!</text >

10 </comment >

11 <comment >

12 <text >Thanks for sharing.</text >

13 </comment >

14 </comments >

15 </social_media >

In this example, the schema is �exible because there can be any number of posts and comments, and there
are no �xed �elds for any table. The structure of the schema is also implicit because there is no �xed
structure for the data.

2.10 Given a relatively small UML conceptual diagram, translate it into a logical
representation of data considering �exible schema representation
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3 Distributed Data Management

3.1 Give a de�nition of Distributed System

A distributed system is a system whose components, located at networked computers, communicate and coor-
dinate their actions only by passing messages.

3.2 Enumerate the six challenges of a Distributed System

The challenges of a distributed system are:

� Scalability: the system must be able to continuously evolve to support a grouwing amount of tasks. This
can be achieve by:

� Scale up: upgrading or improving the components.

� Scale out: adding new components.

Scale out mitigates bottlenecks, but extra communication is needed between a growing number of com-
ponents. This can be partially solved using direct communication between peers. Load-balancing is also
crucial and, ideally, should happen automatically.

� Performance/e�ciency: the system must guarantee an optimal performance and e�cient processing.
This is usually measured in terms of latency, response time and throughput. Parallelizing reduces response
time, but uses more resources to do it, negatively a�ecting throughput unless resources are increased to
compensate.

This e�ect can be mitigated optimizing network usage or using distributed indexes.

� Reliability and availability: the system must perform tasks consistently and without failure: it must
be reliable. It also must keep performing tasks even if some of its components fail: it must be available.
The availability is not always possible, and some functionalities might be a�ected, but at least a partial
service could be provided when a component fails.

To increase failure tolerance, heartbeat mechanisms can be used to monitor the status of the compo-
nents, together with automatic recovery mechanisms.

It is also important to keep the consistency of data shared by di�erent components, since this requires
synchronization. This can be mitigated by asynchronous synchronization mechanisms and �exible
routing of network messages.

� Concurrency: the system should provide the required control mechanisms to avoid interferences and
deadlocks in the presence of concurrent requests. Consensus protocols can help solving con�icts and
enabling the system to keep working without further consequences.

� Transparency: users of the system should not be aware of all the aforementioned complexities. Ideally,
they should be able to work as if the system was not distributed.

3.3 Give a de�nition of Distributed Database

A Distributed Database (DDB) is an integrated collection of databases that is physically distributed across
sites in a computer network and a Distributed Database Management System (DDBMS) is the software
system that manages a distributed database such that the distribution aspects are transparent to the users.

There are some terms worth detailing:

� Integrated: �les in the database should be somehow structured, and an access interface common to all
of them should be provided so that the physical location of data does not matter.

� Physically distributed across sites in a computer network: data may be distributed over large
geographical areas but it could also be the case where distributed data is, indeed, in the very same room.
The required characteristic is that the communication between nodes is done through a computer network
instead of simply sharing memory or disk.
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� Distribution aspects are transparent to the users: transparency refers to separation of the higher-
level view of the system from lower-level implementation issues. Thus, the system must provide mecha-
nisms to hide the implementation details.

3.4 Explain the di�erent transparency layers in DDBMS

In a DDBMS distribution transparency must be ensured, i.e., the system must guarantee data, network,
fragmentation and replication transparency:

� Data independence: data de�nition occurs at two di�erent levels:

� Logical data independence: refers to indi�erence of user applications to changes in the logical struc-
ture of the database.

� Physical data independence: hides the storage details to the user.

� Network transparency: the user should be protected from the operation details of the network, even
hiding its existence whenever possible. There are two subclasses:

� Location transparency: any task performed should be independent of both the location and system
where the operation must be performed.

� Naming transparency: each object must have a unique name in the database, irrespectively of its
storage site.

� Replication transparency: refers to whether synchronizing replicas is left to the user or automatically
performed by the system. Ideally, all these issues should be transparent to users, and they should act as
if a single copy of data were available.

� Fragmentation transparency: when data is fragmented, queries need to be translated from the global
query into fragmented queries, handling each fragment. This translation should be performed by the
DDBMS, transparently to the user.

Note that all these transparency levels are incremental.
Note also that full transparency makes the management of distributed data very di�cult, so it is widely

accepted that data independence and network transparency are a must, but replication and/or fragmentation
transparency might be relaxed to boost performance.

3.5 Identify the requirements that distribution imposes on the ANSI/SPARC
architecture

The Extended ANSI/SPARC architecturewas designed to provide a comprehensive framework for orga-
nizing and managing complex database systems. The extended architecture includes the same three levels as
the original ANSI/SPARC architecture, but it adds a fourth level, called the user level.

The four levels of the extended ANSI/SPARC architecture are:

� User Level: The user level is the highest level and includes the end users or applications that access the
database system. The user level provides a simpli�ed view of the data that is available in the system, and
it de�nes the interactions between the user and the system.

� External Level: The external level is the next level down and includes the external schemas that de�ne
the view of the data that is presented to the end users or applications. Each external schema is speci�c
to a particular user or group of users and provides a simpli�ed view of the data that is relevant to their
needs.

� Conceptual Level: The conceptual level is the third level and includes the global conceptual schema that
describes the overall logical structure of the database system. The global conceptual schema provides a
uni�ed view of the data in the system and de�nes the relationships between di�erent data elements.

� Internal Level: The internal level is the lowest level and includes the physical schema that de�nes the
storage structures and access methods used to store and retrieve the data. The internal schema is speci�c
to the particular database management system and hardware platform that is being used.
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Figure 3: Extended ANSI/SPARC architecture.

This is summarized in Figure 3.
This architecture does not consider distributed, so it need to be consequently adapted to provide distribution

trasnparency. To this end, a global conceptual schema is needed to de�ne a single logical database. But the
database is composed of several nodes, each of which must now de�ne a local conceptual schema and an internal
schema. These adaptations are depicted in Figure 4.

In both architectures, mappings between each layer are stored in the global catalog, but in the distributed
architecture there two mappings which are particularly important, namely the fragmentation schema and
the allocation schema.

3.6 Draw a classical reference functional architecture for DDBMS

The functional architecture of a centralized DBMS is depicted in Figure 5. The query manager is a component
of a database management system (DBMS) that is responsible for handling user queries and managing the overall
query processing. It is composed of several sub-components:

� The view manager is responsible for managing the views de�ned in the system. Views are virtual tables
that are derived from the base tables in the database and are used to simplify the user's interaction with
the database. The view manager translates user queries that reference views into queries that reference
the base tables, allowing the user to interact with the database at a higher level of abstraction.

� The security manager is responsible for enforcing security policies and access controls in the system. It
ensures that only authorized users are allowed to access the database and that they only have access to
the data that they are authorized to see. The security manager also enforces constraints and ensures that
the data in the database is consistent and valid.

� The constraint checker is responsible for verifying that the data in the database conforms to the
integrity constraints de�ned in the schema. It checks for violations of primary key, foreign key, and other
constraints, and ensures that the data in the database is consistent and valid.

� The query optimizer is responsible for optimizing user queries to improve performance. It analyzes
the query and determines the most e�cient way to execute it, taking into account factors such as the
available indexes, the size of the tables involved, and the cost of di�erent query execution plans. The
query optimizer generates an optimal query execution plan that minimizes the time required to process
the query.

22



3.7 Enumerate the eight main features of Cloud Databases 3 DISTRIBUTED DATA MANAGEMENT

Figure 4: Extended ANSI/SPARC architecture with distribution.

Once these steps are done, the execution manager launches the di�erent operators in the access plan in order,
building up the results appropriately.

The scheduler deals with the problem of keeping the databases in a consistent state, even when concurrent
accesses occur, preserving isolation (I from ACID).

The recovery manager is responsible for preserving the consistency (C), atomicity (A) and durability (D)
properties.

The bu�er manager is responsible for bringing data to main memory from disk, and vice-versa, commu-
nicating with the operating system.

This architecture is not su�cient to deal with distributed data. The functional architecture of a distributed
DBMS (DDBMS) is depicted in Figure 6. As we can see, there are now two stages:

1. Modules cooperate at the global level, transforming the data �ow and mapping it to the lower layers,
dealing with a single view of the database and the distribution transparency:

(a) The global query manager contains the view manager, security manager, constraint checker and
query ooptimizer, which behave as in the centralized case, except for the optimizer, which now
considers data location and consults the global schema to determine which node does what.

(b) The global execution manager inserts communication primitives in the execution plan and co-
ordinates the execution of the pieces of the query in the di�erent components to build up the �nal
results from all the query pieces executed distributedly.

(c) The global scheduler receives the global execution plan and distributes trasks between the available
sites, guaranteeing isolation between di�erent users.

2. Modules cooperate at the local level, with a very similar behavior to that of the centralized DBMS.

3.7 Enumerate the eight main features of Cloud Databases

� Ability to scale horizontally.
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Figure 5: Functional architecture of a centralized DBMS.

Figure 6: Functional architecture of a DDBMS.
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� E�cient fragmentation techniques.

� Use as e�ciently as possible distributed memory and indexing mechanisms to parallelize execution. Spped
up relies on massive replication and parallelism (which in turn improve reliability and availability).

� Cloud Databases relax the strong consistency asked by ACID transactions and de�ne the weaker concept
of eventual consistency.

� A simplistic call level interface or protocol is provided to manage data, which is easy to learn and use, but
puts the optimization burden on the side of the developers. This also compromises some transparency.
The schemaless nature of these systems complicates even more the creation of a declarative query language
like SQL.

� The setting up of hardware and software must be quick and cheap.

� The concept of multi-tenancy appears: the same hardware/software is shared by many tenants. This
requires mechanisms to manage the sharing and actually bene�tting from it.

� Rigid pre-de�ned schemas are not appropriate for these databases. Instead, there is a need towards gaining
�exibility.

3.8 Explain the di�culties of Cloud Database providers to have multiple tenants

The di�culty can be summarized as the need to deal with the potential high number of tenants, and the
unpredictability of their workloads' characteristics. Popularity of tenants can change very rapidly, fact that
impacts the Cloud services hosting their products. Also, the activities that they perform can change.

Thus, the provider has to implement mechanisms to be able to deal with this variety and variability in the
workloads.

Also, the system should tolerate failures and o�er self-healing mechanisms, if possible.
Finally, the software should easily allow to scale out to guarantee the required latencies. Adding or upgrading

new machines should happen progressively, so that service suspension is not necessary at all.

3.9 Enumerate the four main problems tenants/users need to tackle in Cloud
Databases

� Data design: provides the means to decide on how to fragment the data, where to place each fragment,
and how many times they will be stored (replication).

� Catalog management: requires the same considerations as the design of the database regarding frag-
mentation, locality and replication, but with regard to metadata instead of data. The di�erence in this
case is that some of the decisions are already made on designing the tool and few degrees of freedom are
left for administrators and developers.

� Transaction management: it is specially hard and expensive in distributed environments. Distributed
recovery and concurrency control mechanisms exist, but there is a need to �nd a trade-o� between the
security they guarantee and the performance impact they have.

Specially relevant in this case is the management of replicas, which are expensive to update, but reduce
query latency and improve availability.

� Query processing: it must be as e�cient as possible. Parallelism should bene�t from data distribution,
without incurring in much communication overhead, which can be reduced by replicating data.

3.10 Distinguish the cost of sequential and random access

3.11 Explain the di�erence between the cost of sequential and random access

3.12 Distinguish vertical and horizontal fragmentation

Data fragmentation deals with the problem of breaking datasets into smaller pieces, decreasing the working
unit in the distributed system. It has been useful to re�ect the fact that applications and users might be
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interested in accessing di�erent subsets of the data. Di�erent subsets are naturally needed at di�erent nodes
and it makes sense to allocate fragments where they are more likely to be needed for use. This is data locality.

There are two main fragmentation approaches:

� Horizontal fragmentation: a selection predicate is used to create di�erent fragments and, according to
an attribute value, place each row in the corresponding fragment.

A distributed system bene�ts from horizontal fragmentation when it needs to mirror geographically dis-
tributed data to facilitate recovery and parallelism, to reduce the depth of indexes and to reduce contention.

Fragmentation can go from one extreme (no fragmentation) to the other (placing each row in a di�erent
fragment). We need to know which predicates are of interest in our database. As a general rule: the 20%
most active users produce 80% of the total accesses. We should focus on these users to determine which
predicates to consider in our analysis.

Finally, we need to guarantee the correctness:

� Completeness: the fragmentation predicates must guarantee every row is assigned to, at least, one
fragment.

� Disjointness: the fragmentation pre�cates must be mutually exclusive (minimality property).

� Reconstruction: the union of all the fragments must constitute the original dataset.

We have only considered single relations for this analysis, but it is also possible to consider related datasets
and fragment them together, this is called derived horizontal fragmentation. Let R,S be two relations
such that R possess a foreign key to S and are related by means of a relationship r. In this case, S is the
owner and R is the member. Suppose also that S is fragmented in n fragments Si, i = 1, ..., n, and we
want to fragment R regarding S using the relationship r. The derived horizontal fragmentation is de�ned
as

Ri = R⋉ Si, i = 1, ..., n,

where ⋉ is the left-semijoin1 and the joining attributes are those in r.

If R and S are related by more than one relationship, we should apply the following criteria to decide
which one to use:

� The fragmentation more used by users/applications.

� The fragmentation that maximizes the parallel execution of the queries.

In order to consider a derived horizontal fragmentaiton to be complete and disjoint, two additional con-
straints must hold on top of those stated before:

� Completeness: the relationship used to semijoin both datasets must enforce the referential integrity
constraint.

� Disjointness: the join attribute must be the owner's key.

� Vertical fragmentation: partitions the datasets in smaller subsets by projecting some attributes in each
fragment.

Vertical fragmentation has been traditionally overlooked in practice, because it worsened insertions and
update timems of transactional systems in many times. However, with the arrival of read-only workloads,
this kind of fragmentation arose as a powerful alternative to decrease the number of attributes to be read
from a dataset.

In general, it improves the ratio of useful data read and it also reduces contention and facilitates recovery
and parallelism.

As disadvantages, note that it increases the number of indexes, worsens update and insertion time and
increases the space used by data, because the primery key is replicated at each fragment.

Deciding how to group attributes is not obvious at all. The information required is:

� Data characteristics: set of attributes and value distribution for all attributes.

1R ⋉ S pairs those tuples in R for which there is at least one tuple in S with matching joining key.
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� Workload: frequency of each query, access plan and estimated cost of each query and selectivity of
each predicate.

A good heuristic is the following:

1. Determine primary partitions (subsets of attributes always accessed together).

2. Generate a disjoint and covering combination of primary partitions, which would potentially be stored
together.

3. Evaluate the cost of all combinations generated in the previous phase.

3.13 Recognize the complexity and bene�ts of data allocation

Once the data is fragmented, we must decide where to place each segment, trying to optimize some criteria:

� Minimal cost: function resulting of computing the cost of storing each fragment Fi at a certain node Ni,
the cost of querying Fi at Ni and the cost of updating each fragment Fi at all places where it is replicated,
and the cost od communication.

� Maximal performance: the aim is to minimize the response time or maximize the overall throughput.

This problem is NP-hard and the optimal solution depends on many factors.
In a dynamic environment the workload and access patterns may change and all these statistics should always

be available in order to �nd the optimal solution. Thus, the problem is simpli�ed with certain assumptions and
simpli�ed cost models are built so that any optimization algorithm can be adopted to approximate the optimal
solution.

There are several bene�ts to data allocation, including:

� Improved performance: By distributing the data across multiple nodes, the workload can be distributed
among the nodes, reducing the load on any single node and improving overall performance.

� Increased availability: With data replicated across multiple nodes, the failure of any single node does not
result in a loss of data or loss of access to the data.

� Scalability: Distributed data allocation allows for scaling the system by adding more nodes to the system,
as needed.

� Reduced network tra�c: By keeping data local to the nodes where it is most frequently accessed, data
allocation can reduce the amount of network tra�c needed to access the data.

� Better resource utilization: Data allocation can help to balance the use of resources across the nodes in
the system, avoiding overloading some nodes while underutilizing others.

3.14 Explain the bene�ts of replication

Data replication refers to the process of making and maintaining multiple copies of data across multiple nodes
in a distributed database system. There are several bene�ts to data replication, including:

� Improved availability: By replicating data across multiple nodes, the system can continue to function even
if one or more nodes fail or become unavailable, ensuring the availability of the data.

� Increased fault tolerance: Data replication can help to ensure that data remains available even in the
event of a hardware or software failure, improving the overall fault tolerance of the system.

� Faster data access: With multiple copies of data available across multiple nodes, data can be accessed
more quickly by users and applications, improving overall system performance.

� Improved load balancing: Replicating data across multiple nodes can help to balance the workload on
each node, improving overall system performance and e�ciency.

� Enhanced data locality: Replication can also help to improve data locality by ensuring that frequently
accessed data is available on the same node, reducing the need to access data over the network.
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3.15 Discuss the alternatives of a distributed catalog

The same design problems and criteria can be applied to the catalog, but now we are storing metadata. This
requires two important considerations:

1. Metadata is much smalles than data, which makes it easier to manage.

2. Optimizing performance is much more critical, since accessing this metadata is a requirement for any
operation in the system.

Many decisions are already made by the architects of the system, and only few options can be parameterized
on instantiaitng it.

� Global metadata: are allocated in the coordinator node.

� Local metadata: are distributed in the di�erent nodes.

A typical choice we can make in many NOSQL systems is having a secondary copy of the coordinator (mirroring)
that takes control in case of failure. Of course, this redundancy consume some resources.

3.16 Decide when a fragmentation strategy is correct
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4 Distributed Data Processing

4.1 Explain the CAP theorem

The CAP theorem, also known as Brewer's theorem2, is a principle that states that in a distributed system, it
is impossible to simultaneously provide all three of the following guarantees:

� Consistency: Every read operation will return the most recent write or an error. All nodes see the same
data at the same time.

� Availability: Every non-failing node returns a response for every request in a reasonable amount of time,
without guaranteeing that it contains the most recent write.

� Partition tolerance: The system continues to operate despite arbitrary message loss or network failure
between nodes.

According to the CAP theorem, a distributed system can only provide two out of these three guarantees at a
time. In other words, a distributed system can either prioritize consistency and partition tolerance, consistency
and availability, or availability and partition tolerance, but it cannot achieve all three simultaneously.

This theorem has important implications for the design and operation of distributed systems, as designers
must carefully consider which trade-o�s to make when choosing between consistency, availability, and partition
tolerance. In larger distributed-scale systems, network partitions are given for granted. Thus, we must choose
between consistency and availability: Either we have an always-consistent system that becomes temporally
unavailable, or an always-available system that temporally shows some inconsistencies.

4.2 Identify the 3 con�guration alternatives given by the CAP theorem

� Strong consistency: replicas are synchonously modi�ed and guarantee consistent query answering and
the whole system will be declared not to be available in case of network partition.

� Eventual consistency: changes are asynchronously propagated to replicas, so answer to the same query
depends on the replica being used. In case of network partition, changes will be simply delayed.

� Non-distributed data: connectivity cannot be lost and we can have strong consistency without a�ecting
availability.

4.3 Explain the 4 synchronization protocols we can have

There are two choices that generate four alternative con�gurations for replica synchronization management:

� Primary/secondary versioning:

� Primary versioning refers to a scheme where one copy of the data is designated as the primary copy,
and all updates are made to this copy �rst. Once the primary copy is updated, the changes are
propagated to secondary copies. This approach ensures that all nodes eventually receive the same
data, but it may introduce a delay in propagation.

� In contrast, secondary versioning involves making updates to multiple copies simultaneously, with all
nodes being able to receive updates independently. This approach can reduce the propagation delay,
but it may increase the complexity of the replication process.

� Eager/lazy replication:

� Eager replication refers to a scheme where updates are propagated to all replicas immediately upon
completion, ensuring that all nodes have the most recent version of the data at all times. This
approach can be resource-intensive, as it requires signi�cant network bandwidth and processing
power.

2See [3].
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� On the other hand, lazy replication involves delaying the propagation of updates until necessary, such
as when a read request is received for a particular node. This approach can reduce the network and
processing costs associated with replication but may lead to inconsistencies between replicas in the
short term.

These two choices give rise to four possible alternatives, depicted in Figure 7.

Figure 7: Replica synchronization alternatives. Source: [2].

a) A user can only modify the primary copy, and his changes are immediately propagated to any other
existing copy (which can always be read by any user). Only after being properly propagated and changes
acknowledged by all servers, the user receives con�rmation.

b) A user can only modify the primary copy, and receives con�rmation of this change immediately. His
changes are eventually propagated to any other existing copy (which can always be read by any user).

c) A user can modify any replica, and her changes are immediately propagated to any other existing copy
(which can always be read by any user). Only after being properly propagated and changes acknowledged
by all servers, the user receives con�rmation.

d) A user can modify any replica, and receives con�rmation of this change immediately. His changes are
eventually propagated to any other existing copy (which can always be read by any user).

a) and c) correspond to the traditional concept of consistency, while b) and d) correspond to the concept of
eventual consistency.

4.4 Explain what eventual consistency means

Eventual consistency is a concept in distributed databases that refers to a property of the system where all
updates to a data item will eventually propagate to all nodes in the system and converge to a consistent state,
given a su�ciently long period of time without updates.

In a distributed system, data is replicated across multiple nodes, and each node maintains a copy of the
data. Due to network latency, nodes may have di�erent versions of the data at any given time, leading to
inconsistencies between replicas. Eventual consistency allows for these inconsistencies to exist temporarily until
all nodes have received the updated data.

Eventual consistency does not guarantee immediate consistency between replicas, but it does ensure that all
replicas will eventually converge to a consistent state. This property is particularly useful for distributed systems
that prioritize availability and partition tolerance over consistency 3, such as in large-scale web applications or
data-intensive systems.

3Remember the CAP theorem.
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4.4.1 Replication management con�gurations

Let:

� N : number of replicas

� W : number of uncommited written replicas

� R: number of replicas with the same information to be read before giving a response

The inconsistency window is the time during which W < N .

� If W +R > N , then it is assured that some read replica would have been modi�ed, and strong consistency
is achieved because the user will always receive the updated value.

� If W +R ≤ N , then we cannot ensure this, and the consistency is eventual.

Some usual con�gurations are:

� Fault tolerant system: N = 3, R = 2,W = 2.

� Massive replication for read scaling: N is big and R = 1.

� Read One-Write All (ROWA): R = 1,W = N .

4.5 Enumerate the phases of distributed query processing

1. The global query optimizer performs:

(a) Semantic optimization

(b) Syntactic optimization:

i. Generation of syntactic trees

ii. Data localization

iii. Reduction

(c) Global physical optimization

2. Then, the local query optimizer performs local physical optimization.

4.6 Explain the di�erence between data shipping and query shipping

Data shipping and query shipping are both techniques used in distributed databases to improve performance
and reduce network tra�c. However, they di�er in the way they handle data movement.

Data shipping involves moving the data itself from one node to another node in the network to execute
the query. In other words, the data is shipped to the node where the query is executed. This approach works
well when the amount of data being moved is small, and the network has low latency and high bandwidth.

On the other hand, query shipping involves shipping the query to the nodes where the data resides and
executing the query on those nodes. In this approach, the network tra�c is reduced because only the query is
sent over the network, and the data remains in its original location. This approach works well when the data
is large, and the network has high latency and low bandwidth.

It is possible to design hybrid strategies, in which it is dynamically decided what kind of shipping to
perform.

4.7 Explain the meaning of 'reconstruction' and 'reduction' in syntactic optimiza-
tion

Reconstruction refers to how the datasets are obtained from their fragments. For example, a dataset which
is horizontally fragmented is reconstructed by means of unions.

On the other hand, reduction refers to the process of removing redundant or unnecessary operations from
a query without changing its semantics. This is achieved by applying various optimization techniques, such
as elimination of common sub-expressions, dead-code elimination, and constant folding, which can simplify the
query execution plan and reduce the number of operations required to produce the result.
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4.8 Explain the purpose of the 'exchange' operator in physical optimization

The exchange operator is used to redistribute data between nodes when it is needed to complete a query. For
example, when a query involves joining two tables that are partitioned across multiple nodes, the exchange
operator is used to redistribute the data so that the join can be performed locally on each node, instead of
sending all the data to a single node for processing.

The exchange operator can be used for both horizontal and vertical partitioning. In horizontal partitioning,
the exchange operator is used to redistribute the rows of a table between nodes. In vertical partitioning, the
exchange operator is used to redistribute the columns of a table between nodes.

4.9 Enumerate the 4 di�erent cost factors in distributed query processing

The cost is the sum of the local cost and the communication cost:

� The local cost is cost of the processing at each node, divided in:

� Cost of central unit processing, #cycles.

� Unit cost of I/O operations, #IOs.

� The commnication cost is the cost due to the exchange of information between nodes for synchronization,
divided in:

� Cost of initiating a message and sending a message, #messages.

� Cost of transmitting a byte, #bytes.

4.10 Distinguish between response time and query time

Query time (or execution time) is the time that it takes for the system to process a query, since it starts it
execution until the results start being returned to the user (or are completely returned, if desirable).

Response time is a wider term, that refers to the time it takes for the system since the user issues a query
until she receives the response.

4.11 Explain the di�erent kinds of parallelism

� Inter-query parallelism refers to the execution of multiple queries in parallel. This means that the
queries are executed independently of each other and can run simultaneously on di�erent processors or
nodes in a distributed system.

� Intra-query parallelism, on the other hand, involves breaking down a single query into smaller parts
or sub-queries that can be executed in parallel. This can improve query performance by allowing multiple
parts of a query to be executed simultaneously.

Within intra-query parallelism, there are two types of parallelism:

� Intra-operator parallelism refers to the parallel execution of operations within a single query
operator. For example, if a query involves a selection operation, the selection can be parallelized
by partitioning the data and having multiple processors or nodes evaluate the selection condition on
di�erent partitions in parallel. In the context of the process tree, it corresponds to several parts of
the same node executing in parallel.

� Inter-operator parallelism refers to the parallel execution of di�erent query operators. For exam-
ple, if a query involves both a selection and a join operation, the selection and join can be executed
in parallel by having di�erent processors or nodes evaluate di�erent parts of the query plan simulta-
neously. In the context of the process tree, it corresponds to several nodes executing in parallel.
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4.12 Identify the impact of fragmentation in intra-operator parallelism

Intra-operator parallelism is based on fragmenting data, so that the same operator can be executed parallely
by issuing it to di�erent fragments of the data.

If there is a preexistant (a priori) fragmentation, it can be used for this. But even if the dataset has not
been previously fragmented, the DDBMS can fragment it on the �y to bene�t from this approach.

The input of an operation can be dynamically fragmented and parallelized, with di�erent strategies:

� Round Robin: This method involves distributing the data uniformly across multiple nodes in a circular
fashion. Each new record is assigned to the next node in the circle, and when the last node is reached, the
next record is assigned to the �rst node again. This type of fragmentation works well when the workload
is evenly distributed across all nodes.

� Range: With this method, the data is partitioned based on a speci�c range of values in a column. For
example, a column with dates could be used to partition the data into di�erent time periods. Each node
would be responsible for storing data within a certain range of dates. This method is useful when there
are speci�c patterns in the data that can be used to group it. This approach facilitates directed searches,
but needs accurate quartile information.

� Hash: This method involves taking a hash value of a column and using it to determine which node the
data should be stored on. The hash function should distribute data evenly across all nodes, and it should
be consistent so that the same value always hashes to the same node. This type of fragmentation works
well when the workload is unpredictable, and there is no speci�c pattern to the data. This approach allows
directed searches, but performance depends on the hash function chosen.

If dynamic fragmentation is used, a new property containing information about the fragmentation strategy
being used, the fragmentation predicates and the number of fragments produced must be added to the process
tree.

4.13 Explain the impact of tree topologies (i.e. linear and bushy) in inter-operator
parallelism

A linear query plan, also known as a pipeline, consists of a series of operators that are executed in a linear
sequence. In this topology, inter-operator parallelism is limited because the output of one operator must be
fully consumed by the next operator before it can begin processing its input. This means that the degree of
parallelism is limited by the slowest operator in the pipeline.

On the other hand, a bushy query plan consists of multiple subtrees that can be executed in parallel. In
this topology, operators are arranged in a more complex structure that allows for more inter-operator parallelism.
For example, two independent subtrees can be executed in parallel, with the results of each subtree combined
in a later operation.

In general, a bushy query plan is more amenable to inter-operator parallelism than a linear query plan.
However, the degree of parallelism that can be achieved depends on many factors, including the number of
available processing resources, the characteristics of the data being processed, and the speci�cs of the query
being executed.

Linear trees can be exploited with parallelism by pipelining, which consists in the creation of a chain of
nested iterators, having one of them per operator in the process tree. The system pulls from the root iterator,
which transitively propagates the call through all other iterators in the pipeline. This does not allow parallelism
per se, but it can if we add a bu�er to each iterator, so they can generate next rows without waiting for a
parent call. Thus, the producer leaves its result in an intermediate bugger and the consumer takes its content
asynchronously. This bu�ers imply that stalls can happen when an operator becomes ready and no new input
is available in its input bu�er, propagating the stall to the rest of the chain.

4.14 Explain the limits of scalability

Amdahl's law states that

S (p,N) =
1

(1− p) + p
N

,
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where S is the maximum improvement reachable by parallelizing the system, N is the number of subsystems,
and p is the fraction of parallelizable work of the system.

This is generalized by the universal scalability law, which states that

C (σ, κ,N) =
N

1 + σ · (N − 1) + κ ·N (N − 1)
,

where C is the maximum improvement reachable by parallelizing the system, N is the number of subsystems, σ
is the system's contention or the non-parallelizable fraction work of the system, and κ is the system's consistency
delay, which models how much the di�erent parallel units require communication.

Thus, scalability is limited by:

� The number of useful subsystem.

� The fraction of parallelizable work.

� The need for communication between subsystems.

4.15 Given the overall number of machines in the cluster, identify the consistency
problems that arise depending on the con�guration of the number of required
replicas read and written to con�rm the corresponding operations

4.16 Given a parallel system and a workload, �nd the number of machines maxi-
mizing throughput

4.17 Estimate the cost of a distributed query

4.18 Given a query and a database design, recognize the di�culties and opportu-
nities behind distributed query processing
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5 Hadoop Distributed File System (HDFS)

5.1 Recognize the need of persistent storage

Persistent storage is important because it allows data to be stored and accessed even after a system or application
has been shut down or restarted. Without persistent storage, data would be lost each time the system or
application is shut down, which is clearly not desirable in most cases.

5.2 Enumerate the design goals of GFS

� E�cient �le management: optimized for large �les.

� E�cient append: because the main access pattern is assumed to be Write Once, Read Many
(WORM), and updates are usually done by appending new data, rather than overwriting existing ones.

� Multi-client.

� Optimal sequential scans: useful to quickly read large �les.

� Resilience failure: failures must be monitored and detected, and when they happen there must be
recovery mechanisms in place to revert potential inconsistencies.

5.3 Explain the structural components of HDFS

The architecture is Coordinator-Worker:

� Coordinator node: responsible for tracking the available state of the cluster and managing the worker
nodes. In HDFS it is called namenode (in Google File System (GFS) it is called master).

� Worker nodes: those doing the actual work. In HDFS they are called datanodes (in GFS they are
called chunknodes).

They have the following characteristics:

� Files are splitted into chunks: a chunk is the minimal unit of distribution. The chunk size can be
customized per �le.

� Chunks can be replicated: to guarantee robustness, each replica must be stored in a di�erent datan-
otes, and the amount of replicas to store is also customizable. If the cluster cannot replicate a chunk for
the required value, the chunk is said to be underreplicated.

� In-memory namespace: thousands of client applications should be served with minimal overhead.
Thus, to reduce lookup costs, the data structure containing the �le hierarchy and references to their
chunks resides in memory in the coordinator node.

� Bi-directional communication: the namenode and datanotes have mechanisms to send both data and
control messages between them. Datanodes can also send control messages to each other, but in most
cases they will be exchanging chunks of data.

� Single point of failure: as the coordination is done by a single done, the situation is that of a single
point of failure (SPOF): if the namenode fails, then the whole cluster becomes unavailable. To overcome
this, it is commong to maintain a failover replica (or mirror).

A depiction of the architecture is in Figure 8.
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Figure 8: HDFS Architecture. Source: HDFS-Architecture.

5.4 Name three �le formats in HDFS and explain their di�erences

� Horizontal Layout: data is stored in separate �les based on some logical grouping or partitioning criteria,
such as by date or by user. Each �le contains records that are self-contained and do not span multiple
�les. This layout is best suited for situations where data is constantly being appended or modi�ed, as it
allows for e�cient data access and manipulation without the need to scan the entire dataset.

� Vertical Layout: In the vertical layout, data is stored in di�erent �les, dividing it into its columns. This
layout is optimized for situations where data is read and processed in a column-wise manner. It allows for
e�cient compression and encoding of data, and enables quick access to speci�c �elds without the need to
scan the entire dataset.

� Hybrid Layout: The hybrid layout combines aspects of both the horizontal and vertical layouts. Data
is partitioned into separate �les based on some logical grouping, and they are also separated into their
columns. This layout provides the bene�ts of both the horizontal and vertical layouts, allowing for e�cient
data access and manipulation while also enabling column-wise processing.

Column pruning involves eliminating unnecessary columns from the result set of a query before executing
the query. This is done by analyzing the query and determining which columns are required to satisfy the query.
The optimizer then generates a plan that only includes the necessary columns, reducing the amount of I/O and
CPU processing required to execute the query. Column pruning is particularly useful in queries that involve
large tables with many columns, as it can signi�cantly reduce the amount of data that needs to be scanned.

Predicate pushdown involves pushing down �ltering conditions into the storage layer, rather than applying
the �lters after reading the data into memory. This is done by analyzing the query and determining which
predicates can be evaluated at the storage layer before the data is read into memory. The storage layer then
applies the predicates before returning the data to the query engine. This can signi�cantly reduce the amount
of data that needs to be read into memory, reducing the I/O and CPU processing required to execute the
query. Predicate pushdown is particularly useful in queries that involve large tables with many rows, as it can
signi�cantly reduce the amount of data that needs to be read from disk.
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Format Description Pros Cons Use Cases

SequenceFile Simple binary �le
format consisting
of key-value pairs.
(Horizontal layout)

- Compact and e�cient
for large �les

- Good for streaming

- Not as �exible as
other formats
- Lacks some
compression
options

- Log �les
- Sensor data

- Web server logs

Avro Data serialization
system with a
compact binary

format and support
for schema
evolution

(Horizontal layout)

- Supports rich data types
and schema evolution

- Can be used with many
programming languages

- May not be as
e�cient as some
other formats
- Requires a
schema

- Data exchange between
Hadoop and other

systems
- Machine learning

applications

Zebra Table-based format
for structured data
with support for
indexing and

�ltering
(Vertical layout)

- Provides indexing and
�ltering capabilities
- E�cient for join

operations
- Good for

projection-based
workloads

- Limited support
for compression
- May not be as
�exible as other

formats

- Data warehousing
- OLAP

ORC Optimized Row
Columnar format
for storing Hive

tables with support
for compression
and predicate
pushdown

(Hybrid layout)

- E�cient for analytical
workloads

- Supports predicate
pushdown for �ltering

- Requires schema
- Not as widely

supported as some
other formats

- Data warehousing
- Hive tables

Parquet Columnar �le
format with

support for nested
data and

compression,
optimized for

query performance
(Hybrid layout)

- Supports nested data
types and compression
- E�cient for analytical

queries
- Supports predicate
pushdown for �ltering

- Not as e�cient
for write-heavy

workloads
- May require more

memory

- Analytics
- Data warehousing
- Machine learning

Table 1: Pros and cons of each data format of HDFS.

Feature
Horizontal Vertical Hybrid

SequenceFile Avro Zebra ORC Parquet
Schema No Yes Yes Yes Yes

Column Pruning No No Yes Yes Yes
Predicate Pushdown No No No Yes Yes

Metadata No No No Yes Yes
Nested Recrods No No Yes Yes Yes
Compression Yes Yes Yes Yes Yes
Encoding No Yes No Yes Yes

Table 2: Comparison of data formats of HDFS.
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5.5 Recognize the importance of choosing the �le format depending on the work-
load

As we have seen, each format provides a di�erent set of features, which will a�ect the overall performance when
retrieving the data from disk. There are heuristic rules to decide the most suitable �le format depending on the
kind of query to be executed:

� SequenceFile: if the dataset has exactly two columns.

� Parquet: if the �rst operation of the data �ow aggregates data or projects some of the columns.

� Avro: if the �rst operation of the data �ow scans all columns, or performs other kinds of operations such
as joins, distinct, or sort.

5.6 Explain the actions of the coordinator node in front of chunkserver failure

The coordinator is in charge of the detection of failures and tolerance. Periodically, the namenode receives
heartbeat messages from the datanodes. If a namenode systematically fails to send heartbeats, then the
namenode assumes that the datanote is unavailable and corrective actions must be taken. The namenode:

1. Looks up the �le namespace to �nd out what replicas were maintained in the lost chunkserver.

2. This missing replicas are fetched from the other datanodes maintaining them.

3. They are copied to a new datanode to get the system back to a robust state.

5.7 Explain a mechanism to avoid overloading the master node in HDFS

The strategy is based on caching metadata in the client, and works as follows:

1. The �rst time a �le is requested, the client applications must request the information from the namenode.

2. The namenode instructs the corresponding datanodes to send the appropriate chunks. They are chosen
according to the closeness in the network to the client, optimizing bandwidth.

3. The datanodes send the chunks composing the �le to the client application.

4. The client is now able to read the �le. But it also keeps the locations of all the chunks in a cache.

5. If the client needs the same �le, it does not need to ask the namenode, but can request directly to the
datanodes whose information was cached before.

The set of caches in the clients can be seen a strategy for fragmentation and replication of the catalog.

5.8 Explain how data is partitioned and replicated in HDFS

� Balancing allows HDFS to have a great performance working with latge datasets, since any read/write
operation exploits the parallelism of the cloud. This balancing is donde by randomly distributing the
data chunks into di�erent servers.

Having more blocks per node in the cluster increases the probability that the blocks will be better balanced
over the nodes, but even using 40 blocks per node, the coe�cient of variation is still big (more than 10%).
To correct skewed distributions, Hadoop o�ers the Balancer, which examines the current cluster load
distribution and based on a threshold parameter, it redistributes blocks across cluster nodes to achieve
better balancing. Exceeding the threshold in either way would mean that the node is rebalanced. In
addition to periodically �xing the distribution of an HDFS cluster in use, the Balancer is also useful when
changing the cluster's topology.

� The replication factor is a value that indicates how many replicas of each �le must be maintained and
it can be customized globally or at the level of �le. If it is not possible to maintain the replication factor,
the system informs the user about the speci�c chunks that are underreplicated.
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Stale replicas can appear either because a worker was down and its blocks were not updated, or due
to a failure of a write operation. Detecting this replicas is crucial to maintain consistency. For this,
the namenode maintains block version numbers to distinguish up-to-date and stale replicas. When the
namenode aims to append new data to a �le, it updates the block version numbers associated to the �le's
blocks.

5.9 Transaction management

HDFS applies a eager/primary-copy strategy for replica synchronization:

� Writing can only happen on the primary-copy and the replicas are blocked until they are synchronized:

1. The client communicates to the namenode that it wants to write data into a �le. It communicates
the target path and how many chunks it wants to write.

2. The coordinator annotates how many replicas are to be stored, and where they will be stored. This
information is sent back to the client.

3. The client writes the primary replica into a datanode (the primary datanode or primary
chunkserver). Datanodes talk to each other, sending replicas of the chunk until a consistent state is
reached.

4. When all chunks have been written, the client sends a commit message to the primary replica.

5. The primary replica commits the changes to all other replicas.

6. The rest of the replicas con�rm the commit.

7. The primary replica acknowledge the changes to the client.

5.10 Recognize the relevance of sequential read

Sequential reads heavily bene�t from data locality, which is mostly ignored by random access.
If we use a rotating disk, then the cost basically depdens on three components:

� Seek time: time to position the arm.

� Rotation time: average time waiting for the disk to spin until the head reaches the right sector.

� Data transfer: which depends on the bandwidth.

The di�erent between sequential and random acces is that random access does not �nd the data together, so
its cost is:

CRA = n · (seek + rotation+ transfer) ,

while for sequential access, seek and rotation only accounts once:

CSA = seek + rotation+ n · transfer.

Moreover, sequential acces.s pattern makes the next read absolutely predictable with pre-fetching, maximizing
the e�ective read ratio by bene�tting from the multiples layers of caching. In �gure 9, there is a diagram of how
memory caching works. The closer to the disk, the more capacity the memory has, but with higher latency.
The closer to the CPU, the faster and smaller the memory is. Thus, �nding data in the top levels of cache is
hard, but crucial to gain performance.

5.11 Choose the format for an HDFS �le based on heuristics

5.12 Estimate the data retrieved by scan, projection and selection operations in
SequenceFile, Avro and Parquet
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Figure 9: Memory caching diagram. Source: Hazelcast Glossary of Terms.

6 HBase

6.1 Give the de�nition of the BigTable data model

A BigTable is a sparse, distributed, persistent, multi-dimensional, sorted map:

� Sparse: few keys have an associated value.

� Distributed: enabling cluster parallelism.

� Persistent: data is stored in disk (using HDFS as underlying technology).

� Multi-dimensional: the values have columns.

� Sorted: lexicographically by the primary key.

� Map: a map is a data structure that associates a unique key to each value (record).

6.2 Explain what a map structure is

A map data structure is a collection of key-value pairs that allows fast and �exible access to its elements
based on keys. Maps can store di�erent types of keys and values, such as numbers, strings, objects, etc. Maps
are useful for storing associations between two objects or values.

6.3 Explain the di�erence between a Key-Value and a Wide-Column store

A key-value store is a simple model that stores data as pairs of keys and values. A wide-column store is a
more complex model that stores data as rows and columns, where each row can have di�erent columns. Some
di�erences between them are:

� A key-value store can only query data by key, while a wide-column store can query data by row or column.

� A key-value store has no schema, every key has one value, that can be of any form.
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� A wide-column store has a �exible schema, where every row can have di�erent columns. Each of the
columns is schema-less.

� A key-value store is suitable for simple lookups, while a wide-column store is suitable for analytical queries.

Some examples of key-value stores are Redis, etcd and Memcached. Some examples of wide-column stores are
Cassandra, HBase and ScyllaDB.

6.4 Enumerate the main schema elements of HBase

� Table: a table is a collection of one or more column families.

� Column family: a column family is a group of columns that share a common pre�x and storage options.
A quali�er is an internal �eld of the columns. It is set at the row-level, so it is not �xed and can vary
from column to column and from row to row.

� Row: a row is a collection of column values that are identi�ed by a unique row key.

� Cell: a cell is the value of a column in a row. Each cell can contain multiple versions of the same data:

� Each version is identi�ed by a timestamp, which can be assigned explicitly or automatically.

Example 6.1. An example
Users

Row key ColumnFamily1 ColumnFamily2

Personal Address
Alice name: Alice Smith, email: alice@upc.es street: Avinguda Diagonal, city: Barcelona
Bob name: Bob Jones street: Gran Vía, city: Murcia

Charlie name: Charlie Brown, email: charlie@ch.ch
If we wanted to recreate this example in HBase:

1 --0 Open the HBase shell

2 --1 Create the table Users with column families Personal and Address

3 CREATE TABLE 'Users ', 'Personal ', 'Address '

4

5 --2 Insert records

6 PUT 'Users', 'Alice', 'Personal:name', 'Alice Smith', 'Personal:email', 'alice@upc.es', '

Address:street ', 'Avinguda Diagonal '

7

8 --3 We can add more values (we forgot the city!)

9 PUT 'Users', 'Alice', 'Address:city', 'Barcelona '

10

11 --4 Same for the rest

12

13 --5 To read a value

14 GET 'Users', 'Alice'

6.5 Explain the main operations available of HBase

� CREATE TABLE <tablename>, <colf1>,...,<colfn>: Creates a table with de�ned column families.

� DESCRIBE <tablename>: Describes the schema of the speci�ed table, including its column families and
any compression or encoding settings.

� ALTER <tablename>, <params>: Used to modify the schema of an existing table, such as adding or
removing column families, changing compression or encoding settings, or modifying table-level properties.

� COUNT <tablename>: Counts the number of rows in the speci�ed table.

� EXISTS <tablename> [, <params>]: Used to check whether a table or column family exists in HBase or
not.
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� DISABLE <tablename>: Disables the speci�ed table, i.e., the table is taken o�ine and no further reads
or writes are allowed.

� ENABLE <tablename>: Enables a disabled table.

� DROP <tablename>: Permanently deletes the speci�ed table.

� PUT <tablename>, <rowkey> [, <columns>]: Puts a new record with the speci�ed key and columns in
the speci�ed table.

� GET <tablename>, <rowkey> [, <columns>]: Retrieves the data for the speci�ed row and columns from
the speci�ed table.

� DELETE <tablename>, <rowkey> [,<columns>]: Deletes the speci�ed row or columns from the speci�ed
table.

� SCAN <tablename> [, <columns>]: Scans the speci�ed table and retrieves all rows that match the
speci�ed criteria.

� LIST: Lists all the tables in the HBase cluster.

� EXIT: Used to exit the HBase shell. When you execute this command, the shell will close and you will
be returned to the command prompt.

� STATUS [{summary | simple | detailed}]: Used to display the status of the HBase cluster, including the
number of servers and regions, the average load, and the cluster ID.

� SHUTDOWN: Used to shut down the HBase cluster. This command will stop all HBase daemons and
bring down the HBase cluster. You should use this command with caution, as it will result in the loss of
any data that has not been �ushed to disk.

6.6 Enumerate the main functional components of HBase

6.7 Explain the role of the di�erent functional components in HBase

� Region Servers (HRegionServer): HBase stores data in regions, which are subsets of a table. Each
region is served by a region server, which is responsible for serving read and write requests for that region.

� HMaster: The HMaster is the coordinator node for the cluster. It manages the metadata for the HBase
tables, including region assignment and load balancing.

� ZooKeeper: HBase relies on ZooKeeper for coordination and synchronization of distributed processes.
ZooKeeper is used to elect the HMaster and to store metadata for HBase.

� HDFS: HBase stores its data in Hadoop Distributed File System (HDFS). HDFS provides scalable and
fault-tolerant storage for HBase data. HBase uses two types of HDFS �les:

� HFile: regular data �les containing column data.

� HLog: region's log �les, that allow �ush/fsync for small append-style writes.

� HBase Client: The HBase client is used to interact with the HBase cluster. It provides APIs for creating,
reading, updating, and deleting data in HBase.

6.8 Explain the tree structure of data in HBase

In HBase, data is stored in a tree structure that is composed of regions, stores, and memstores.

� Regions: A region is a subset of a table that contains a range of contiguous rows. HBase automatically
splits regions as they grow in size and merges regions as they shrink, in order to maintain a balanced
distribution of data across the cluster.
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StoreFile (HFile format)

128 MB
64 KB 64 KB 64 KB
64 KB 64 KB 64 KB
64 KB 64 KB ...

128 MB
64 KB 64 KB 64 KB
64 KB 64 KB 64 KB
64 KB 64 KB ...

Table 3: A StoreFile.

� Stores (StoreFile): A store is a physical storage unit that is associated with a region and contains a
set of column families. Each store is responsible for storing the data for one or more column families.
StoreFiles are divided by HDFS in chunks.

� MemStores: A MemStore is an in-memory data structure that is associated with a store and contains a
sorted map of key-value pairs. When a client writes data to HBase, it is initially written to the memstore.
Once the MemStore reaches a certain threshold, it is �ushed to disk as a new store �le. Usually, the size
of a MemStore is 128 MB.

Within each store, data is stored in a column-oriented fashion, with all values for a given column stored
together. This allows for e�cient access to columns and column families, and also enables compression and
other optimization techniques.

Thus, a StoreFile is a �le of HFile format, consisting on several HDFS chunks of size 128 MB, which are
structured into HBase blocks of size 64 KB.

6.9 Explain the 3 basic algorithms of HBase

HBase employs three basic algorithms to manage the storage and retrieval of data: �ush, minor compaction,
and major compaction.

� Flush: When a client writes data to HBase, it is initially written to an in-memory data structure called
the memstore. Once the memstore reaches a certain threshold, HBase will �ush it to disk as a new store
�le, a SSTable. This process is known as a �ush. Flushing is important to ensure that data is written to
disk in a timely manner and to free up memory for new writes. Flushing generates di�erent disk versions
of the same record.

� Minor compaction: Over time, as data is written and deleted from HBase, SSTables can become
fragmented and contain empty or deleted cells. To address this, HBase periodically performs a minor
compaction, which merges smaller SSTables together and removes any empty or deleted cells. This helps
to optimize data storage and improve query performance. This process runs regularly in the background.
Note that this operation does not remove all record versions (only some).

� Major compaction: In addition to minor compaction, HBase also performs periodic or, most often,
manually triggered major compactions, which merge all SSTables for a given region into a single SSTable
and remove any deleted cells. Major compactions are more resource-intensive than minor compactions,
but they help to further optimize data storage and improve query performance. After a major compaction
occurs, all versions of the records are merged into one (so they can be seen as a consistency checkpoint of
the region).

Both minor and major compactions are con�gurable, and the frequency and timing of these operations can be
adjusted based on the workload and resource availability of the HBase cluster.

6.10 Explain the main components and behavior of an LSM-tree

The LSM-tree (Log-Structured Merge Tree) is a data structure that is used in many modern distributed
databases, including HBase, Cassandra, and LevelDB. The LSM-tree is designed to provide e�cient and scalable
read and write performance for large datasets. The main components and behavior of an LSM-tree are:
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� Log-structured storage: In an LSM-tree, new data is initially written to a write-ahead log, which is an
append-only �le that is optimized for sequential writes. The log provides durability for the data, ensuring
that it is safely stored on disk in the event of a crash.

� MemTable: In addition to the write-ahead log, an LSM-tree also includes an in-memory data structure
called the MemTable. As new data is written to the database, it is �rst written to the MemTable. Once
the memtable becomes full or reaches a certain size threshold, it is �ushed to disk as a new SSTable. This
MemStore holds the most recent updates sorted by key, enabling for fast lookups.

� Sorted string table (SSTable): An SSTable is a persistent, sorted data structure that contains a subset
of the data in the database. SSTables are created through the �ushing of the MemTable and are organized
as a series of key-value pairs, sorted by key. These, as mentioned previously, may contain di�erent versions
of the same row.

� Merge and compaction: Over time, the database accumulates many SSTables, which can become
fragmented and ine�cient to query. To address this, LSM-trees periodically merge and compact SSTables
together, creating a new, more e�cient SSTable that contains a subset of the data in the original SSTables.
This process is typically performed as a background process, with the merged data being written to a
new, compacted SSTable.

� Bloom �lters: LSM-trees often use Bloom �lters to improve read performance. A Bloom �lter is a
probabilistic data structure that is used to test whether a key is present in an SSTable without actually
reading the data. Bloom �lters can be used to avoid costly disk seeks for keys that are not present in the
database.

As can has been outlined, there are two main maintenance operations:

� The in-memory structure reaches the threshold:

1. Take next in memory leafs.

2. Flush them to an SSTable.

� On triggering a compaction:

1. Take n SSTables and merge them.

2. Put the merge in an in-memory bu�er.

3. If bu�er size exceeds chunk size:

(a) Write one chunk to disk

(b) Purge bu�er

(c) Keep exceeds in the bu�er

6.11 Compare a distributed tree against a hash structure of data

A distributed tree and a hash structure are two di�erent approaches to organizing data in a distributed system,
and each has its own strengths and weaknesses.

A distributed tree, such as HBase's region-based storage model, uses a hierarchical structure to organize
data. The tree is partitioned into regions, with each region containing a range of contiguous row keys. Each
region is stored on a separate server, allowing the system to scale horizontally by adding more servers as needed.
This approach is well-suited for read-heavy workloads where data is frequently accessed based on its key, as it
allows for e�cient range scans and lookups of individual keys. However, it can be less e�cient for write-heavy
workloads, as writes may require updating multiple nodes in the tree.

A hash structure, on the other hand, uses a non-hierarchical approach to organizing data, with each
item in the structure being assigned a unique key based on a hash function. This allows for e�cient storage
and retrieval of data based on its key, as the hash function can be used to quickly locate the relevant data
without requiring a hierarchical lookup. Hash structures are well-suited for write-heavy workloads, as they can
be designed to minimize the number of nodes that need to be updated for each write. However, they may be
less e�cient for range scans or other types of queries that require traversing large amounts of data.
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In general, the choice between a distributed tree and a hash structure will depend on the speci�c requirements
of the application and the workload it needs to support. Both approaches have their strengths and weaknesses,
and the best choice will depend on factors such as the size and structure of the data, the expected read and
write patterns, and the performance and scalability requirements of the system.

6.12 Justify the need of dynamic hashing

Dynamic hashing is a technique used in database management systems to handle collisions that can occur
when multiple keys are hashed to the same index in a hash table. This technique involves adjusting the size of
the hash table dynamically as the number of keys increases, to maintain a low collision rate and ensure e�cient
access to the data.

There are several reasons why dynamic hashing is necessary:

� E�cient use of memory: If the hash table is too small, collisions will occur frequently, leading to
degraded performance. On the other hand, if the hash table is too large, it may waste memory. Dynamic
hashing allows the system to adjust the size of the hash table dynamically, ensuring that it is large enough
to handle the data, but not so large that it wastes memory.

� Scalability: Dynamic hashing is essential for systems that need to handle large and growing datasets.
As the size of the data increases, the hash table needs to be resized to maintain performance. Dynamic
hashing allows this resizing to happen automatically, without requiring manual intervention.

� Flexibility: Dynamic hashing allows the system to adjust the size of the hash table based on the speci�c
needs of the workload. For example, if the workload is read-heavy, the system may allocate more memory
to the hash table to improve read performance. If the workload is write-heavy, the system may allocate
less memory to the hash table to improve write performance.

� Collision avoidance: Collisions can cause performance degradation and may even lead to incorrect
results if they are not handled properly. Dynamic hashing helps avoid collisions by resizing the hash table
as needed to ensure that the data is evenly distributed across the available slots.

Without dynamic hashing, the functioning is to have a hash function f (x) and an assignation function h (x). The
hash function distributes the values into a determined range, ideally uniformly, while the assignation function
decides in which region the record should be stored. A typically used assignation function is

h (x) = f (x) mod #servers

Note, nonetheless, that in this case, adding a new server implies modifying the assignation function, which
implies communicating the new function to all servers, as well as a massive data transfer. Thus, the importance
of dynamic hashing.

Another challenge, is that any access must go through the hash directory.

Example 6.2. Let's see what could happen with an example. Imagine we have three nodes, and they are
working normal, until this point is reached:

N0 N1 N2

0 1 2
3 4 5
6 7 8
9 10 11

If now we want to add a new machine, because we need more resources, the situation after the restructuration
would be as follows:

N0 N1 N2 N3

0 1 2 3
4 5 6 7
8 9 10 11
12

Here, all red-colored records have been moved. We see how this situation entails high transfer costs.
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6.12.1 Linear hash

Linear Hashing is a dynamic hashing technique that enables a hash table to grow or shrink dynamically as
the number of keys increases or decreases. The hash table is divided into a series of buckets, each of which can
hold one or more keys. When the number of keys in a bucket exceeds a certain threshold, the bucket is split,
and a new bucket is created to hold the over�ow keys.

We maintain a pointer to the next bucket to split, and two hash functions are considered. We take n such
thath 2n ≤ #servers < 2n+1 and use the functions h1 (x) = x mod 2n and h2 (x) = x mod 2n+1. When a
bucket over�ows, the pointed bucket splits.

6.12.2 Consistent hash

Consistent Hashing is a technique used to distribute data across multiple nodes in a cluster. It involves
mapping each node and data item to a point on a circle, and using the position of the item on the circle to
determine which node it should be stored on. When a node is added or removed from the cluster, the items
that were previously assigned to that node need to be redistributed across the remaining nodes. In this case,
we choose the hash function to lie on a range that is large enough to cope with all our possible values. The
circle arrangement means that, to determine the node in which to store an object, we do the following:

� Compute h (x).

� Take the server j such that idj−1 < h (x) ≤ idj .

� Store h (x) in j.

6.13 Explain the structure of the HBase catalog

The HBase catalog is a set of internal tables that HBase uses to store metadata about the tables and regions
in the cluster. The catalog is managed by the HMaster daemon and provides information about the location
of regions, which servers are serving them, and which versions of the data are available.

The catalog consists of the following tables:

� ROOT table: The ROOT table is the �rst table accessed during startup and contains information about
the location of the META table. It is always located on the �rst region server in the cluster and is stored
in memory.

� META table: The META table contains information about the regions in the HBase cluster, including
their start and end keys, the region server hosting the region, and the replicas for each region. This
information is used by HBase clients to locate the regions that contain the data they need.

� Namespace table: The namespace table contains information about the namespaces in the HBase cluster,
including their name and any associated con�guration settings.

� Quota table: The quota table contains information about resource quotas for tables, namespaces, and
users in the HBase cluster.

� ACL table: The ACL table contains information about access control lists (ACLs) for tables and names-
paces in the HBase cluster.

All of these tables are HBase tables themselves, and are stored in the same way as other tables in the cluster,
with regions split across the available region servers. The ROOT and META tables are special in that they are
stored in memory on the �rst region server in the cluster, and are not split into regions like other tables.

The catalog is an essential component of the HBase architecture, as it provides the means for clients to
locate the regions that contain the data they need, and for HBase to manage the distribution and replication
of data across the cluster.

Thus, the main structure is a three-level structure, consisting on the ROOT table, the META table and the
data itself.
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6.14 Explain the mistake compensation mechanism of the cache in HBase client

HBase implements a client cache similar to that of HDFS to avoid constantly disturbing the coordinator. Thus,
only the �rst time a key is requested by an application, the request needs to go down the tree structure of
metadata. Eventually, some RegionServer will send the corresponding data to the client, and this will take note
in the cache of who did this. In successive requests, that key will be found in the client cache and the request
will be directly addressed to the right RegionServer.

The tree structure of HBase is more volatile than that of HDFS directory, as well as multilevel; two facts that
complicate its management. It can happen that when the application �nds the key in the cache and requests it
to the RegionServer, this one does not have that key anymore. In this case, the RegionServer itself scales the
request up the tree structure to its parent.

In the worst case, they key would not be under the parent either, and this will propagate the request to
the RootRegion. Since the RootRegion has the information of the whole domain of keys, it is guaranteed
that it will be able to forward the request down the tree to the appropriate MetaRegion, and this to the user
RegionServer that now has the key, which will directly send the corresponding value to the client. Since we are
assuming a three-level tree, this compensation actions will require at most four extra calls between the di�erent
RegionServers.

6.15 Enumerate the ACID guarantees provided by HBase

� Atomicity: only guaranteed at row level. The classical concept of transaction a�ecting di�erent rows
does not exist in HBase.

� Consistency: HBase does not provide any kind of integrity constraints. Replication management at the
disk level completely relies on that provided by HDFS underneath.

� Con�guration of persistent data is eager/primary copy.

� Synchronization of MemStores is lazy/primary copy.

� Isolation: it o�ers the read commited ISO isolation level by locking all families at once for the
same row. There is not any way to wrap a set of multi-row operations into a single unit. Consequently,
there is not any guarantee of snapshot isolation, since during the execution of the scan rows can appear
or dissapear, and the result may not either correspond to the state before nor after the operation.

� Durability: before con�rming any modi�cation in a table, the operation is annotated in the log �le,
which guarantees it is never lost. Thus, it follows a Write Ahead Log protocol.

6.16 Explain the execution �ow of an HBase query both at global and local levels

The execution �ow of an HBase query can be divided into two levels: global and local.
Global level:

1. Client sends a query to the HBase RegionServer that owns the row key or range of row keys being queried.

2. When a query is received by a HBase RegionServer, the Yet Another Resource Negotiator (YARN) resource
manager is consulted to determine if there are available resources to handle the query.

3. The RegionServer consults the HBase catalog to locate the region(s) that contain the data being queried.
This allows for inter-query parallelism, as di�erent queries can go to di�erent regions. Moreover, if read
replicas are enabled, read-only queries can be further parallelized.

4. The RegionServer forwards the query to each of the relevant region servers that are serving the region(s)
containing the data. Here, intra-query parallelism is possible if the domain of the keys is appropriately
set. Nonetheless, in general this is not possible.

5. Each RegionServer performs the query locally and sends the results back to the RegionServer that received
the query.

6. The RegionServer aggregates the results from the di�erent regions and sends the �nal result back to the
client.
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Local level:

1. When a query is received by a region server, it consults its own in-memory cache to check if the required
data is already present in memory.

2. If the required data is not present in memory, the region server reads the required data from disk and
caches it in memory for future use.

3. The region server performs the required operations on the cached data and returns the result to the
RegionServer that received the query.

4. If required, the region server may write any changes back to disk after the query is complete.

6.17 Given few queries, de�ne the best logical structure of a table considering its
physical implications in terms of performance

6.18 Given the data in two leafs of a Log-Structured Merge-tree (LSM-tree),
merge them

6.19 Given the current structure of a Linear Hash, modify it according to inser-
tions potentially adding buckets

To modify the Linear Hash structure to handle insertions potentially adding buckets, �rst we need some de�ni-
tions:

� Already split buckets: buckets before the pointed one. In these we use h2.

� To be split buckets: buckets between the pointer and 2n. In these we use h1.

� Created: buckets between 2n and the end. In these we use h2.

When we receive a new record, we follow the steps:

1. We compute h1 (x). If the correspondent bucket is already split, we take h2 (x).

2. If hi (x) is not full, we introduce record x in it.

3. Else, we split the pointed bucket, and create a new over�ow bucket (if it does not exist before) connected
to the bucket that is full.

(a) We insert x in this over�ow bucket.

(b) We update the values of the split bucket, taking h2 to its values and moving them as needed.

Eventually, we will have space to allocate the new records.

Example 6.3. Let's see one example. We have the following situation:

Buckets

B0 2,4
B1 3,5

Here, colour blue indicates the pointed bucket. Now, we want to insert key 9. Then, the result would be:

Buckets

B0 4
B1 3,5 Over�ow 9
B2 2

Say we now insert 11. Then:

Buckets

B0 4
B1 5,9
B2 2
B3 3

As we have splitted all the initial buckets, we increase n by 1 and reset the pointer to bucket 0.

48



6.20 Given the current structure of a Consistent Hash, modify it in case of adding a bucket 6 HBASE

6.20 Given the current structure of a Consistent Hash, modify it in case of adding
a bucket

If we add a bucket, k, to the current structure of a Consistent Hash, it will be located between two buckets, j
and j − 1. Thus:

� Objects between idk and idj stay in bucket j.

� Objects between idj−1 and idk are moved to bucket k.

Example 6.4. Imagine a range large enough is 41, and we take h (x) = x mod 41. We have the following
structure:

BucketId Objects

8 2,5,7
16 8,13,14
32 18,19,21,25,27,29
40 34,37,38

We want to add a new node, with id 24:

BucketId Objects

8 2,5,7
16 8,13,14
24 18,19,21
32 25,27,29
40 34,37,38

6.21 Calculate the number of round trips needed in case of mistake compensation
of the tree metadata

6.22 Use HBase shell to create a table and access it

6.23 Use HBase API to create a table and access it
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7 Document Stores: MongoDB

7.1 Explain the main di�erence between key-value and document stores

Document stores are essentially key-value stores, but in which the value is a document, i.e., it follows a known
syntax. This allows to de�ne secondary indexes.

In a key-value store, data is stored as a collection of key-value pairs, where each key is unique and each
value is associated with that key. These stores are optimized for high-speed access and retrieval of data based
on a speci�c key. They are often used for simple data retrieval tasks, such as caching or storing user session
data.

On the other hand, document stores are designed to handle more complex data structures, such as
documents or JSON objects. In a document store, data is stored as collections of documents, which can contain
nested data structures and arrays. These stores are optimized for more complex data retrieval and querying
operations, making them a better choice for applications that require more advanced data processing capabilities,
such as content management systems or e-commerce platforms.

7.2 Explain the main resemblances and di�erences between XML and JSON doc-
uments

XML and JSON are both widely used data interchange formats that are used to represent and transmit struc-
tured data between di�erent systems. While both formats serve a similar purpose, they have some key di�erences
and similarities.

Similarities:

� Both XML and JSON can represent complex data structures, including nested elements and attributes.

� Both formats are widely supported by programming languages and frameworks.

� Both formats can be used to represent data in a human-readable and machine-readable format.

� Both formats support Unicode, making it possible to represent data in di�erent languages.

Di�erences:

� XML is a markup language, while JSON is a data interchange format. This means that XML has a more
complex syntax, including tags and attributes, while JSON uses a simpler syntax consisting of key-value
pairs and arrays.

� XML requires a closing tag for every element, while JSON uses braces to de�ne the beginning and end of
a data object.

� XML is more verbose than JSON, which makes it less e�cient in terms of �le size and network transfer
time.

� JSON is generally easier to parse and manipulate programmatically, which makes it more popular for
web-based applications.

7.3 Explain the design principle of documents

The design principle of document stores is based on the idea of storing data as documents rather than in a
relational table structure.

To be able to solve the impedance mismatch problem, documents break the 1NF. This avoids joins, so that
we can get data needed with one single fetch, and use indexes to identify �ner data granularity.

7.4 Name 3 consequences of the design principle of a document store

� Massive denormalization: Document stores typically denormalize data to a greater extent than tra-
ditional relational databases. This means that instead of splitting data into separate tables, a document
store may store all of the data for a single entity (such as a customer) in a single document. This can
result in larger documents, but it also makes querying and updating the data more e�cient.
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� Independent documents: In a document store, each document is self-contained and independent. This
means that each document can contain all of the data needed for a speci�c operation, rather than requiring
joins or additional queries to fetch related data from other tables. This can make it easier to work with
data in a document store, but it can also result in duplicated data across multiple documents.

� Massive rearrangement of documents on changing the application layout: One consequence of
the independent nature of documents in a document store is that changes to the structure of an application
(such as adding or removing �elds) may require signi�cant rearrangement of documents. For example, if
a new �eld is added to a document, all existing documents may need to be updated to include that �eld,
which can be a time-consuming process. This can make it more di�cult to maintain consistency across
the data in a document store over time.

7.5 Explain the di�erence between relational foreign keys and document refer-
ences

In a relational database, foreign keys are used to establish relationships between tables. A foreign key is a
�eld in one table that refers to the primary key of another table. For example, if you have a table of customers
and a table of orders, you might have a foreign key �eld in the orders table that refers to the primary key of
the customers table. This allows you to associate orders with customers and perform queries that join the two
tables based on the foreign key relationship.

In a document store, document references are used to establish relationships between documents. A
document reference is a �eld in one document that refers to the ID of another document. For example, if you
have a collection of blog posts and a collection of comments, you might have a document reference �eld in each
comment document that refers to the ID of the blog post it relates to. This allows you to associate comments
with blog posts and perform queries that fetch all comments for a given blog post.

The main di�erence between relational foreign keys and document references is that foreign keys are based
on a strict, prede�ned schema, while document references allow for more �exible and dynamic data models. In
a relational database, the schema is �xed and you must de�ne foreign keys between tables before data can be
inserted. In a document store, the schema is more �exible, and you can add document references to establish
relationships between documents as needed.

Another di�erence is that foreign keys are typically used to enforce referential integrity between tables,
which means that you can't insert a row in the orders table unless the corresponding customer exists in the
customers table. Document references, on the other hand, do not enforce referential integrity in the same way,
and it's possible to have document references to non-existent documents. However, some document stores do
o�er features to enforce referential integrity, such as cascading deletes or validation rules on document references.

7.6 Exemplify 6 alternatives in deciding the structure of a document

1. Schema variability: potentially di�erent schema is speci�c to every document in semi-structured. This
entails:

(a) Metadata embedding: Suppose you are designing a document to store information about a book,
such as the title, author, and publisher. In a semi-structured data model, you may choose to embed
metadata within the document itself, rather than storing it separately in a schema. For example,
you may include �elds such as "creation date" or "last updated by" within the document.

(b) Attribute optionality: Continuing with the example of a book document, you may choose to make
certain attributes optional, depending on the nature of the data. For example, you may not always
have information about the edition or the ISBN number, so you may choose to make these �elds
optional in the document schema.

2. Schema declaration: a priori schema declaration is just optional and �exible in semi-structured data.
This includes the declaration of:

(a) Structure and data types: Suppose you are designing a document to store information about a
customer, such as their name, address, and order history. In a semi-structured data model, you may
choose to declare a basic schema for the document, but allow for �exibility in the speci�c �elds and
data types used. For example, you may declare that the document should have a "name" �eld of
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type string, but allow for variation in the format or content of the name (e.g. �rst name, last name,
or both).

(b) Integrity constraints: Continuing with the example of a customer document, you may choose to
impose certain integrity constraints on the data, such as ensuring that the customer's email address
is unique across all documents. However, you may also allow for �exibility in the data model by not
enforcing constraints that are not critical to the business logic.

3. Structure complexity: complex nesting can be used in semi-structured data. This includes the repre-
sentation of:

(a) Nested structures: Suppose you are designing a document to store information about a company's
organizational structure, such as the departments, managers, and employees. In a semi-structured
data model, you may choose to represent this structure using nested objects or arrays, to allow for
�exibility in the depth and complexity of the organizational hierarchy.

(b) Multi-valued attributes: Continuing with the example of an organizational structure document,
you may choose to use multi-valued attributes to represent relationships between entities. For exam-
ple, you may include a �eld for "direct reports" in the manager object, which can contain an array
of employee objects representing the manager's subordinates.

7.7 Explain the di�erence between JSON and BJSON

JSON (JavaScript Object Notation) and BJSON (Binary JSON) are both data interchange formats that are
used to represent semi-structured data in a human-readable format. However, the main di�erence between the
two is that BJSON is a binary format, whereas JSON is a text-based format.

In more detail, the main di�erences between JSON and BJSON are as follows:

� Encoding: JSON uses a text-based encoding format that represents data using Unicode characters. In
contrast, BJSON uses a binary encoding format that represents data using binary values.

� Size: Since BJSON uses a binary encoding format, it typically results in much smaller �le sizes compared
to JSON. This is because binary data can be represented more e�ciently in terms of space than text-based
data.

� Parsing: Parsing JSON involves reading the text-based data character by character and interpreting it
as objects and values. In contrast, parsing BJSON involves reading the binary data and decoding it into
objects and values.

� Encoding/Decoding speed: BJSON can be encoded and decoded much faster than JSON due to its
binary nature. This makes it a more suitable format for applications that require high-speed processing
and low network latency.

� Human-readability: JSON is more human-readable than BJSON because it uses a text-based format
that is easy to understand and edit. BJSON, on the other hand, is not as human-readable because it uses
binary encoding.

7.8 Name the main functional components of MongoDB architecture

We distinguish between machines that contain data, organized in replica sets and those that purely route
queries, known as mongos.

1. Replica sets:

(a) Con�g servers: contain the global catalog, which keeps track of existing shards.

(b) Shards: the components that actually store data.

(c) Balancer: a process inside the primary con�g server in charge of detecting unbalanced shards and
moving chunks from one shard to another. This allows shards to split or migrate chunks of data
between di�erent machines.
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2. Mongos: they split the queries and merge back the results. To make it more e�fcient and avoid disturbing
the coordinator, they maintain a cache of shards, which is lazily synchronized. Typically, mongos sit in
the client machine to avoid network tra�c.

In addition, we have:

1. Clients: MongoDB clients are applications or tools that interact with the MongoDB database. Clients
can communicate with MongoDB using various drivers and APIs provided by MongoDB.

2. Mongod: The mongod process is the main component of the MongoDB server. It manages the data
stored in the database, handles read and write requests, and interacts with clients.

7.9 Explain the role of 'mongos' in query processing

In MongoDB, 'mongos' is a component of the architecture that acts as a query router in sharded clusters. Its
main role is to route incoming client requests to the appropriate shard(s) in the cluster.

When a client sends a query request to the mongos process, mongos �rst checks whether the query includes
the shard key. If the query includes the shard key, mongos routes the request directly to the appropriate shard(s)
based on the shard key value. If the query does not include the shard key, mongos sends the query to all shards
in the cluster and aggregates the results before returning them to the client.

Mongos also performs other important functions in query processing, including load balancing and query
optimization. Speci�cally, mongos balances the load across di�erent shards by distributing incoming queries
evenly across all available shards. This helps to ensure that no single shard is overloaded with too many queries,
which can lead to performance issues.

In addition, mongos performs query optimization by analyzing incoming queries and determining the most
e�cient way to process them. This involves selecting the appropriate indexes to use and optimizing the order
of operations to minimize the number of documents that need to be scanned. The mechanism is rather simple
and just pushes the �rst selection and projection to the shards.

This provides inter-query parallelism, since di�erent routers and replicas can serve di�erent users, but not
inter-operator parallelism, since all are run in the router after the �rst operation in the shards is �nished.

It also o�ers intra-operator parallelism in case of static fragmentation, as di�erent shards would serve di�erent
pieces of the collection in parallel for the same query.

7.10 Explain what a replica set is in MongoDB

In MongoDB, a replica set is a group of MongoDB servers that maintain identical copies of the same data. A
replica set provides high availability and automatic failover in case of server failures.

A replica set consists of several MongoDB instances, or nodes, that are con�gured to communicate with each
other. One node is designated as the primary node, and the others are secondary nodes. The primary node is
responsible for receiving write operations and applying them to the data set. The secondary nodes replicate the
data from the primary node and can serve read operations.

If the primary node fails or becomes unavailable, one of the secondary nodes is automatically elected as the
new primary node. This process is called failover, and it ensures that the replica set can continue to function
even in the event of a node failure. Once the failed node is restored, it can rejoin the replica set and serve as a
secondary node.

Replica sets provide several bene�ts in MongoDB, including high availability, fault tolerance, and scalability.
They are often used in production environments to ensure that the database can continue to operate even in
the face of hardware or network failures.

7.11 Name the three storage engines in MongoDB

MongoDB provides three storage engines to manage data:

� WiredTiger: The default storage engine since MongoDB 3.2. It is a modern, e�cient, and high-
performance storage engine that provides document-level concurrency control, compression, and support
for transactions.
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� In-Memory: This storage engine stores all data in memory, which provides very fast read and write
operations. However, it is not suitable for large datasets, and all data is lost if the server is restarted or
shuts down.

� MMAPv1: This is the legacy storage engine in MongoDB, which uses memory-mapped �les to store data
on disk. It is still available in MongoDB, but it has been deprecated and is no longer actively developed.
It does not support document-level concurrency control or compression, and it is not recommended for
new deployments.

Each storage engine has its own advantages and disadvantages, and the choice of storage engine depends on
the speci�c use case and workload. For most workloads, the WiredTiger storage engine is recommended as it
provides a good balance of performance, scalability, and reliability.

7.12 Explain what shard and chunk are in MongoDB

In MongoDB, sharding is a method for distributing data across multiple servers, or shards, to improve perfor-
mance and scalability. A shard is a single MongoDB instance that stores a portion of the data.

A chunk is a contiguous range of data within a shard that is assigned to a speci�c shard key range. The
shard key is a unique identi�er used to distribute data across shards in a sharded cluster. The data in a
MongoDB collection is partitioned into chunks based on the shard key value. Each chunk represents a range of
shard key values that is managed by a speci�c shard. The chunk size is dynamically managed by the MongoDB
balancer, which redistributes chunks across shards as the distribution of data changes over time. When the
size of a chunk grows beyond a certain limit, the balancer splits the chunk into two smaller chunks, which are
then assigned to di�erent shards. Similarly, when the size of a chunk shrinks below a certain limit, the balancer
merges the chunk with an adjacent chunk and assigns the new larger chunk to a single shard.

The use of shards and chunks allows MongoDB to horizontally scale databases to handle large volumes of
data and high write and read request rates. By distributing data across multiple shards, MongoDB can provide
better performance, availability, and scalability compared to a single monolithic database.

7.13 Explain the two horizontal fragmentation mechanisms in MongoDB

In MongoDB, horizontal fragmentation, or sharding, is a mechanism for dividing data across multiple
servers, or shards, to improve performance and scalability. MongoDB provides two mechanisms for horizontal
fragmentation:

1. Range-based sharding: This mechanism partitions data based on a speci�ed shard key range. Each shard
is responsible for a speci�c range of shard key values. For example, if the shard key is a timestamp, a
range-based sharding strategy can be used to split data by time intervals such as hours, days, or months.

2. Hash-based sharding: This mechanism partitions data based on a hash of the shard key value. Each shard
is responsible for a speci�c range of hash values. Hash-based sharding can be useful when the shard key
values are not evenly distributed, as it ensures a more balanced distribution of data across shards.

Both range-based and hash-based sharding mechanisms have their own advantages and disadvantages. Range-
based sharding is useful when the data is naturally partitioned into ranges, such as by time, and it can be easier
to manage and monitor. Hash-based sharding can provide a more balanced distribution of data across shards
and can be more �exible in handling changes in the data distribution over time.

In both mechanisms, MongoDB uses a shard key to determine how to distribute the data across shards. The
shard key is a �eld in the data that is used to partition the data into chunks, which are then distributed across
the shards. The choice of shard key is an important factor in determining the performance and scalability of
a sharded MongoDB cluster. It is a mandatory attribute in all the documents of the collection, and must be
indexed. It can be chosen by calling

sh.shardCollection (⟨namespace⟩ , ⟨key⟩) .

Note: there is no vertical fragmentation.
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7.14 Explain how the catalog works in MongoDB

In MongoDB, the catalog is a metadata repository that stores information about the databases, collections,
indexes, and other objects in the database. The catalog is used by MongoDB to manage and optimize the
performance of database operations.

The catalog information in MongoDB is treated like any other piece of data. The data is stored in a replica
set, and consequently enjoys all its synchronization bene�ts and consequences. The only speci�city is that its
information is cached in the routers. The behavior in MongoDB is also Lazy/Primary-copy.

The catalog is updated automatically by MongoDB as new databases, collections, and indexes are created,
modi�ed, or deleted. MongoDB also uses the catalog to optimize database operations, such as query planning
and execution, by analyzing the metadata stored in the catalog.

Developers and database administrators can also query the catalog to retrieve information about the
databases, collections, indexes, and other objects in the MongoDB instance. This information can be used
to monitor and troubleshoot the performance of database operations and to optimize the schema and indexing
strategies for the MongoDB collections.

7.15 Identify the characteristics of the replica synchronization management in
MongoDB

Replication is based on Replica Sets, which are sets of mongod instances (typically three) that act coordinately.
A shard siting in a replica set means that its data is mirrored in all the nodes that belong to that replica set.
Since replica sets are disjoint, this means that scaling by sharding results very expensive in terms of the number
of machines. It may be better to simply add more memory to a single machine.

The replica synchronization management in MongoDB has the following characteristics:

� Asynchronous replication: MongoDB replica sets use asynchronous replication to propagate data
changes from the primary to the secondary nodes. This means that the primary node does not wait for
the secondary nodes to con�rm the receipt of the data changes before returning the acknowledgement
to the client. Asynchronous replication can improve the performance and availability of the database by
reducing the latency of write operations.

� Oplog: The MongoDB replication mechanism uses an operation log (oplog) to record all data changes
made to the primary node. The oplog is a capped collection that stores a rolling window of the most
recent data changes. Secondary nodes use the oplog to catch up with the primary node by replaying the
data changes in the oplog in order.

� Data consistency: MongoDB replica sets use a consensus-based protocol to ensure data consistency
across the nodes. When a primary node receives a write operation, it records the operation in its oplog
and sends it to the secondary nodes. The secondary nodes apply the data changes to their local copies
of the data and then send an acknowledgement back to the primary node. The primary node waits
for a majority of the secondary nodes to con�rm the receipt of the data changes before returning the
acknowledgement to the client. This ensures that the data changes are committed to a majority of the
nodes in the replica set before they are considered to be fully written.

� Automatic failover: MongoDB replica sets provide automatic failover in the event that the primary
node fails. When the primary node fails, the replica set elects a new primary node based on a consensus-
based protocol. The new primary node takes over the role of the primary node and begins accepting write
operations.

� Priority and voting: MongoDB replica sets allow administrators to set the priority and voting power
of the nodes in the replica set. The priority and voting power of a node determine its eligibility to become
the primary node in the event of a failover. Nodes with higher priority and voting power have a greater
chance of being elected as the primary node.

7.16 Explain how primary copy failure is managed in MongoDB

In MongoDB, a primary copy failure is managed through a process called automatic failover. When the primary
node fails, the other nodes in the replica set elect a new primary node. The election process is based on a
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consensus protocol that ensures that the new primary node is chosen by a majority of the nodes in the replica
set.

The election process works as follows:

1. The nodes in the replica set communicate with each other to determine the status of the primary node.
If the primary node fails to respond, the other nodes detect the failure and initiate an election.

2. Each node that is eligible to become the primary node (i.e., a node that has a copy of the data and is
up-to-date with the oplog) casts a vote for itself.

3. The nodes communicate with each other to determine the node with the most votes. If a node receives
a majority of the votes (i.e., more than half of the nodes in the replica set), it becomes the new primary
node.

4. If no node receives a majority of the votes, the election fails and the replica set cannot elect a new primary
node. In this case, the administrators must intervene to resolve the issue.

Once a new primary node is elected, the other nodes in the replica set update their con�gurations to recognize
the new primary node. The new primary node then starts accepting write operations and propagating data
changes to the other nodes in the replica set.

In addition to automatic failover, MongoDB provides several features to minimize the risk of primary copy
failure. These include:

� Data replication: MongoDB replica sets replicate data across multiple nodes to ensure that there are
multiple copies of the data in the system.

� Oplog replication: MongoDB replica sets replicate the oplog (the log of data changes) across all nodes
in the replica set to ensure that the nodes are up-to-date with the data changes.

� Health checks: MongoDB replica sets regularly check the status of the nodes in the replica set to ensure
that they are functioning properly. If a node fails to respond, the other nodes detect the failure and
initiate an election to choose a new primary node.

7.17 Name the three query mechanisms of MongoDB

The three query mechanisms of MongoDB are:

� Find method: This is the primary method for querying MongoDB. It searches for documents in a collection
that match a speci�ed query �lter and returns the results in a cursor.

� Aggregation framework: This provides a more powerful and �exible mechanism for querying MongoDB
by combining multiple documents and performing operations on them, such as grouping, sorting, and
�ltering.

� MapReduce: This is a method for processing large datasets in parallel across multiple nodes in a MongoDB
cluster. It breaks down the data into smaller chunks and distributes the processing to the nodes, then
combines the results into a �nal output.

7.18 Explain the query optimization mechanism of MongoDB

MongoDB's query optimization mechanism is designed to minimize the time and resources required to execute
queries. The query optimizer takes into account various factors when choosing an execution plan, such as the
available indexes, the size of the collection, and the complexity of the query.

When a query is submitted to MongoDB, the query optimizer analyzes the query and selects an execution
plan that is optimal for the query. The execution plan consists of a sequence of operations that MongoDB
performs to retrieve the requested data. These operations can include scanning indexes, �ltering data, and
sorting data.

The query optimizer chooses the execution plan that minimizes the number of operations required to execute
the query and the amount of data that needs to be scanned4. This results in faster query execution and reduces
the load on the system.

MongoDB's query optimizer uses a variety of techniques to optimize queries, including:

4According to the professor the optimizer is not cost based, but I am not very sure about that based on what I am reading.
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� Index selection: The query optimizer selects the optimal index to use based on the query's �lter and
sort criteria. MongoDB o�ers di�erent kinds of indexes (B+tree, hash, geospatial and textual), which can
be multi-attribute, or even de�ned over arrays.

� Query reordering: The query optimizer rearranges the order of query operations to minimize the amount
of data that needs to be scanned.

� Query pruning: The query optimizer eliminates unnecessary operations that do not contribute to the
query result.

� Query caching: The query optimizer caches frequently executed queries and their execution plans to
reduce the time required to execute them. MongoDB query optimizer does not launch di�erent executions
in parallel using alternative access paths. Instead, it compares plan execution for a query pattern every
~1,000 write operations and then caches the �winning� query plan until the next time the optimizer runs
or you explicitly call an explain() on that query. The winning query plan is based on the number of �work
units� (works) performed by the query execution plan when evaluating candidate plans. The works value
represents an approximate measure of how much work a query plan requires to execute. The optimizer
selects the plan with lowest works value as the winning plan5.

7.19 Given two alternative structures of a document, explain the performance
impact of the choice in a given setting

7.20 Simulate splitting and migration of chunks in MongoDB

7.21 Con�gure the number of replicas needed for con�rmation on both reading
and writing in a given scenario

7.22 Perform some queries on MongoDB through the shell and aggregation frame-
work

7.23 Compare the access costs given di�erent document designs

7.24 Compare the access costs with di�erent indexing strategies (i.e. hash and
range based)

7.25 Compare the access costs with di�erent sharding distributions (i.e. balanced
and unbalanced)

5According to the professor: When a query is received, the cache is visited to see if there is a matching entry. If it is found,
it is used to generate a plan for the current one, which will be then tested for some time. If the generated plan takes too long or
there is not any query pattern in the cache matching the current query, the system launches di�erent executions in parallel using
alternative access paths. Eventually, one of such executions will �nish and the others will be killed. The executed one will be the
one kept in the cache.
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8.1 Enumerate several use cases of MapReduce

MapReduce was based on Google development and was originally conceived to compute the page rank. Nonethe-
less, it can be used in many di�erent situations:

� Batch processing: MapReduce can be used to process large volumes of data in batches, such as log �les,
customer records, or social media data.

� Data warehousing: MapReduce can be used to extract, transform, and load (ETL) data into a data
warehouse, such as Hadoop Distributed File System (HDFS).

� Search indexing: MapReduce can be used to index and search large volumes of unstructured data, such
as web pages, documents, or social media posts.

� Machine learning: MapReduce can be used to train and evaluate machine learning models on large
datasets, such as image or speech recognition.

� Fraud detection: MapReduce can be used to detect fraudulent activities in �nancial transactions or
insurance claims.

� Recommendation engines: MapReduce can be used to analyze user behavior and generate personalized
recommendations, such as in e-commerce or online media.

� Log analysis: MapReduce can be used to analyze and visualize system logs, such as web server logs, to
identify patterns and anomalies.

� Social network analysis: MapReduce can be used to analyze social networks and identify communities,
in�uencers, or trends.

� Image and video processing: MapReduce can be used to process and analyze large volumes of multimedia
data, such as images or videos, for content-based retrieval or object recognition.

� Natural language processing: MapReduce can be used to process and analyze natural language data, such
as text or speech, for sentiment analysis, topic modeling, or language translation.

8.2 Explain 6 bene�ts of using MapReduce

� Facilitates scalability: MapReduce is designed to process large volumes of data and is highly scalable.
It can be used to handle increasing amounts of data by adding more machines to the cluster, making it
ideal for big data processing.

� Hidden parallelism: MapReduce hides the complexities of parallel processing by dividing the workload
into smaller tasks and distributing them across multiple machines. This allows for faster processing times
and better resource utilization.

� Transparent distribution: MapReduce abstracts away the details of distributed computing, making it
easier for developers to write code without worrying about the underlying infrastructure.

� Exploit data locality: MapReduce schedules tasks on nodes that are in close proximity to the
data being processed, reducing network overhead and improving performance. This is achieved by
bringing the computation to the data instead of moving the data to the computation.

� Balance workload: MapReduce automatically balances the workload across nodes in the cluster,
ensuring that each machine is processing roughly the same amount of data. This helps prevent
resource bottlenecks and ensures that the job completes in a reasonable amount of time.

� Resilience to failure: MapReduce is designed to be fault-tolerant and can handle failures gracefully. If
a machine fails, the job is automatically rescheduled on another machine.
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� Fine-grained fault tolerance: MapReduce can recover from individual task failures, allowing jobs
to continue processing without needing to restart the entire job. This reduces the impact of failures
on the overall job completion time.

� Useful in any domain: MapReduce is a general-purpose processing framework that can be used in any
domain where there is a need to process large volumes of data in a distributed manner. The framework
is not speci�c to any one industry or application, and can be applied to a wide range of use cases,
such as �nancial analysis, scienti�c research, social media analytics, e-commerce, and more. Additionally,
MapReduce is not limited to structured data and can be used to process unstructured and semi-structured
data as well. Its �exibility and versatility make it a popular choice for organizations of all sizes and
industries.

8.3 Describe what the MapReduce is in the context of a DDBMS

In the context of a DDBMS, this framework introduces some changes:

1. Elimination of the globar scheduler: as data was only going to be read, no inconsistencies could arise,
making the scheduler unnecessary.

2. Elimination of the global query manager: it is the task of the developer to decide how a query should be
executed.

3. MapReduce substitutes the Global Execution Manager.

4. Disregard the complexities of the DDBMS, by implementing MapReduce on top of Hadoop.

8.4 Recognize the signature of Map and Reduce functions

A Map is a function that takes a pair ⟨key, value⟩ of the input domain and obtain a set of zero or more new
⟨key, value⟩ pairs of the output domain:

f : TIK × TIV −→ 2TOK×TOV

⟨k, v⟩ 7→ {⟨k′1, v′1⟩ , ..., ⟨k′n, v′n⟩}
,

here TIK is the domain of input keys, TIV the domain of input values, TOK the domain of output keys and TOV

the domain of output values.
A Reduce is a function that takes all the pairs with the same value, and return a new set of ⟨key, value⟩

pairs combining them:
f : TOK × 2TOV −→ 2TFK ,TFV

⟨k, {v1, ..., vk}⟩ 7→ {⟨k′1, v′1⟩ , ..., ⟨k′n, v′n⟩}
,

here TFK are the �nal keys and TFV the �nal values.

8.5 Explain the phases of a MapReduce operation

� Input: reads data from a DFS.

� If the input �le format is already fragmented into a key-value structure (such as SequenceFile), the
key and value are taken from the �le.

� If the input �le is raw, the framework constructs a key-value structure, where the key is the tuple
o�set in the �le, and the value is the row itself.

� Map: for each input key-value pair, the Mapper machines execute the user-providedmap function, which
can return 0 or more new pairs.

� Partition: the generated key-value pairs are assigned to Reduce machines based on their key. This phase
guarantees that all ocurrences of the same key will be assigned to the same Reducer. Note, however, that
data are not shipped yet.

� Shu�e: the Reduce machines pull the generated key-value pairs from the Mapper machines.
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� Sort & Comparison: each Reduce machine sorts their input key-value pairs based on the key. This
allows to generate, for each distinct key, their corresponding set of values via the merge-sort algorithm.

� Reduce: for each input structure key-set of values, the reduce function is executed, which can return 0
or more key-value pairs.

� Output: the result of the reduce function is written locally at each Reduce machine leveraging on the
DFS.

8.6 Justify to which extent MapReduce is generic

� MapReduce is supported in many store systems, such as HBase, MongoDB or CouchDB.

� Its programming paradigm is computationally complete, which means that any data process can be
adapted to it. Note, however, that some tasks adapt better than others, and it is not necessarily e�-
cient, partly because optimization is very limited because of lack of expressivity.

� Its signature is closed, so iterations can be chained. However, fault tolerance is not guaranteed in between,
and resources and released to be requested again immediately, which is an inne�cient handling of resources.

� It is criticized for being too low-level. There are APIs for Ruby, Python, Java, C++, etc. And there have
been attemps to build declarative languages on top, like HiveQL or Cassandra Query Language (CQL).

8.7 Simulate the execution of a simple MapReduce algorithm from the user (ag-
nostic of implementation details) perspective

8.8 Identify the usefulness of MapReduce in a given use case

8.9 De�ne the key in the output of the map for a simple problem

8.10 Provide the pseudo-code of map and reduce functions for a simple problem
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9.1 Enumerate the di�erent kind of processes in Hadoop MapReduce

In the Hadoop MapReduce framework, there are primarily three types of processes:

� Client program: This is the user program that submits the MapReduce job, specifying the mapper,
reducer, and other con�gurations.

� Mappers: These are tasks that perform the map function on the input data, processing each data block
independently and generating intermediate key-value pairs.

� Reducers: These are tasks that perform the reduce function on the intermediate key-value pairs produced
by the mappers, aggregating the values based on their corresponding keys.

9.2 Draw the hierarchy of Hadoop MapReduce objects

9.3 Explain the information kept in the Hadoop MapReduce coordinator node

The Hadoop MapReduce coordinator node, also known as the JobTracker, keeps track of the following infor-
mation:

1. Map and Reduce tasks: It maintains the status (idle, in-progress, or completed) and the identity of
each worker machine assigned to map or reduce tasks.

2. Intermediate �le regions: It records the location and size of each intermediate �le region produced
by each map task, storing O (M ×R) states in memory, as there are R �les generated by each of the M
mappers.

9.4 Explain how to decide the number of mappers and reducers

The number of map tasks depends on the splitting of the input, which is by default performed per HDFS
block. A general rule of thumb is to have one map task per HDFS block. Ideally, each node should run between
ten and a hundred mappers, each taking more than one minute to execute to justify its creation overhead.

For reducers, there are two suggested con�gurations:

� Minimize the number of tasks (and thus intermediate �les), by creating slightly fewer reducers than the
total number of available processors.

� Balance the workload, by creating less than double the amount of available processors.

9.5 Explain the fault tolerance mechanisms in Hadoop MapReduce

9.5.1 Worker Failure

The corresponding task is immediately reassigned, which is possible because all �les are replicated in HDFS.

9.5.2 Master Failure

Master failure is less likely but can be mitigated by creating checkpoints of its in-memory structure that tracks
the status of tasks and intermediate �les. In case of failure, another node can be designated as the new master
and continue the execution from the last checkpoint.

9.6 Identify query shipping and data shipping in MapReduce

Query shipping occurs in the map phase of MapReduce, where the map tasks are shipped to the nodes where
the input data is stored.

Data shipping occurs during the shu�e phase of MapReduce, when intermediate data is moved from the
mapper nodes to the corresponding reducer nodes.
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9.7 Explain the e�ect of using the combine function in MapReduce

The combine function acts as a local reduce function for each mapper, helping to minimize the amount of
key-value pairs stored on disk and transferred over the network. The combine function can be the same as the
reduce function if it is commutative and associative. If not, it must be designed appropriately to ensure the
�nal outcome remains unchanged while reducing intermediate computations.

9.8 Identify the synchronization barriers of MapReduce

1. All input data must be uploaded to the HDFS before any processing can begin.

2. All mappers must �nish before reducers can start processing the data.

3. When chaining multiple MapReduce jobs, the subsequent job cannot start until the previous one �nishes
writing its output.

9.9 Explain the main problems and limitations of Hadoop MapReduce

� Startup time is very high, as it requires starting multiple JVM in di�erent nodes of the cluster.

� The master is a single point of failure.

� Reassigning tasks to the workers in case of failure is expensive and requires rede�ning the execution plan
on the �y, scheduling chunks one by one.

� Tasks are assigned locally where the chunks are, but if they are not evenly distributed in the cluster, some
of the chunks need to be moved to the available processors.

� Intermediate results are written to disk for fault tolerance, and this entails a cost.

� Reducers fetch all the data from remote nodes.

� Even if data is compressed in the disk, it will be decompressed before processing.

9.10 Apply the di�erent steps of a MapReduce execution at the implementation
level

9.11 Decide on the use of the combine function
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10.1 Name the main Spark contributions and characteristics

� In-memory processing: Spark stores data in memory, allowing faster processing and reducing the time
spent on reading and writing to disk.

� Fault tolerance: Spark uses Resilient Distributed Datasets (RDDs) to provide fault tolerance and main-
tain data consistency.

� Lazy evaluation: Spark delays execution until an action is called, optimizing the execution plan for
better performance.

� Support for multiple languages: Spark provides APIs for Scala, Java, Python, and R.

� Advanced analytics: Spark includes libraries for machine learning (MLlib), graph processing (GraphX),
and stream processing (Structured Streaming).

� Uni�ed platform: Spark combines batch processing, interactive queries, streaming, and machine learning
in a single platform.

10.2 Compare MapReduce and Spark

� Data storage: MapReduce stores data on disk, while Spark stores data in-memory, leading to faster
processing in Spark.

� Processing model: MapReduce uses a two-stage model (Map and Reduce), while Spark supports multi-
stage in-memory processing with DAGs (Directed Acyclic Graphs).

� Ease of use: Spark provides high-level APIs for multiple languages, while MapReduce primarily uses
Java, making Spark more accessible.

� Libraries: Spark includes built-in libraries for machine learning, graph processing, and stream processing,
whereas MapReduce relies on external libraries.

� Iterative processing: Spark is more suitable for iterative algorithms, as it can cache intermediate results
in memory, while MapReduce has to read and write to disk for each iteration.

MapReduce Spark

Data Storage Disk In-memory
Processing model two-stage multi-stage with DAGS

Ease of use Java Multiple languages
Libraries Relies on external libraries Built-in libraries for ML, graphs, streams

Iterative processing Costly Cheaper

10.3 De�ne a dataframe

Dataframes o�er a symmetrical treatment of rows and columns, both of which can be referenced explicitly by
position or by name. The data stored in a dataframe has to adhere to a schema, but this is de�ned at runtime,
making it useful for data cleaning. Dataframes o�er a great variety of operations, enabling us to perform
relational-like operations, speadsheet operations and linear algebra operations. Also, their query syntax is
incementally composable and dataframes can be natively embedded in an imperative language.
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10.4 Distinguish dataframe from relation and matrix
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10.5 Distinguish Spark and Pandas dataframe

� Distributed vs. local: Spark DataFrames are distributed across a cluster, requiring a Spark session and
enabling parallel processing, while Pandas DataFrames are local, single-node data structures.
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� Language: Spark DataFrames are available in Scala, Java, Python, and R, while Pandas DataFrames
are speci�c to the Python language.

� Immutability vs mutability: Spark DataFrames are immutable, meaning once created, they cannot be
changed, while Pandas DataFrames can be modi�ed.

� Lazy evaluation vs eager evaluation: Spark DataFrames use lazy evaluation, while Pandas DataFrames
execute operations immediately (eager evaluation).

� Scalability: pandas DataFrames are not scalable, even if multithread oeprators exist, manual splitting
is required, while Sprak DataFrames are transparently scalable in the Cloud.

� Transposability: Pandas DataFrames are transposable, but Spark DataFrames are not.

10.6 Enumerate some abstraction on top of Spark

1. Resilient Distributed Datasets (RDDs): RDDs are the fundamental abstraction in Spark, represent-
ing an immutable distributed collection of objects that can be processed in parallel. RDDs provide fault
tolerance through lineage information and can be cached across multiple stages for iterative algorithms.
They support low-level operations like map, �lter, and reduce, allowing developers to have �ne-grained
control over data processing.

2. DataFrames: DataFrames are a higher-level abstraction built on top of RDDs. They represent a
distributed collection of data organized into named columns, similar to a relational database table.
DataFrames provide a convenient API for handling structured and semi-structured data and allow for
optimizations through the Catalyst query optimizer and the Tungsten execution engine. Operations like
�ltering, aggregation, and transformation are available through the DataFrame API.

3. Spark SQL: Spark SQL is a module that provides a programming interface for working with structured
and semi-structured data. It allows users to query data using SQL as well as the DataFrame API. Spark
SQL integrates with the Spark ecosystem, enabling the use of SQL queries with other Spark libraries
like MLlib and GraphX. It also supports reading from and writing to various data formats and storage
systems, such as Parquet, Avro, JSON, Hive, HBase, and JDBC.

4. MLlib: MLlib is Spark's built-in library for scalable machine learning. It provides various machine
learning algorithms for classi�cation, regression, clustering, and recommendation, as well as tools for
feature extraction, transformation, and model evaluation. MLlib is designed to scale out across a cluster,
enabling the processing of large datasets for training and prediction tasks. It supports both RDD-based
and DataFrame-based APIs.

5. GraphX: GraphX is a library for graph processing and computation built on top of Spark. It allows users
to work with graphs and perform graph-parallel computations at scale. GraphX provides a �exible graph
computation API that enables users to express graph algorithms like PageRank, connected components,
and triangle counting. It also includes a collection of graph algorithms and builders to simplify graph
analytics tasks.

6. Structured Streaming: Structured Streaming is a module for processing real-time data streams in a
fault-tolerant and scalable manner. It provides a high-level API built on top of DataFrames, allowing
users to express complex streaming computations using the same operations as batch processing. Struc-
tured Streaming handles the incremental processing of data streams, providing exactly-once processing
guarantees and allowing for event-time and late-data processing. It supports various sources and sinks,
such as Kafka, HDFS, and Delta Lake.

10.7 Provide the Spark pseudo-code for a simple problem using dataframes
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11 Spark II

11.1 De�ne RDD

RDD stands for Resilient Distributed Dataset. It is the fundamental abstraction in Spark, representing
an immutable distributed collection of objects that can be processed in parallel. RDDs provide fault tolerance
through lineage information, allowing for data recovery in case of failures.

11.2 Distinguish between Base RDD and Pair RDD

� Base RDD: A basic RDD consisting of a distributed collection of objects. Base RDDs can be created
from data stored in external storage systems or by parallelizing a collection in the driver program.

� Pair RDD: A special type of RDD where each element is a key-value pair. Pair RDDs enable opera-
tions like grouping, reducing, and aggregating by keys. They are useful for tasks like counting words or
computing sums per group.

11.3 Distinguish between transformations and actions

Transformations are operations that create a new RDD from an existing one. They are performed lazily,
meaning they are only executed when an action is called. Examples of transformations include map, �lter, and
reduceByKey.

Actions are operations that return a value to the driver program or write data to external storage systems.
Actions trigger the execution of transformations. Examples of actions include count, collect, and saveAsTextFile.

11.4 Explain available transformations

� map: Applies a function to each element in the RDD, creating a new RDD.

� �lter: Returns a new RDD containing only the elements that satisfy a given predicate.

� �atMap: Applies a function to each element and �attens the results into a single RDD.

� union: Returns a new RDD that contains the union of the elements in the source RDD and another RDD.

� distinct: Returns a new RDD containing the distinct elements of the original RDD.

� groupByKey: Groups the elements of the RDD by key.

� reduceByKey: Groups the elements by key and reduces the values for each key using a speci�ed reduce
function.

� sortBy: Returns a new RDD that is sorted by the speci�ed key function.

11.5 Explain available actions

� count: Returns the number of elements in the RDD.

� collect: Returns all elements of the RDD as an array to the driver program. Be cautious with this action
as it can cause the driver to run out of memory for large RDDs.

� take: Returns the �rst n elements of the RDD as an array.

� �rst: Returns the �rst element of the RDD.

� reduce: Aggregates the elements of the RDD using a given function.

� saveAsTextFile: Writes the elements of the RDD to a text �le in the speci�ed directory.
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11.6 Name the main Spark runtime components

� Driver program: The program that runs the main function and de�nes one or more Spark operations.

� Cluster manager: The component responsible for managing resources and scheduling tasks in a cluster,
such as YARN, Mesos, or the standalone Spark cluster manager.

� Executor: A process that runs on a worker node and executes tasks on behalf of the driver program.

� Task: A unit of work that runs on an executor, representing a single stage of a Spark operation.

11.7 Explain how to manage parallelism in Spark

Parallelism in Spark can be managed by controlling the number of partitions and the number of cores used by
each executor. You can set the default number of partitions when creating an RDD or by repartitioning an
existing RDD. You can also con�gure the number of cores used by each executor in the Spark con�guration.

11.8 Explain how recoverability works in Spark

Recoverability in Spark is achieved through RDD lineage information, which records the sequence of transfor-
mations used to create an RDD. If a partition of an RDD is lost due to a node failure, Spark can recompute the
partition using the lineage information and the transformations applied to the original data. This allows Spark
to recover lost data without the need for data replication, reducing overhead and improving fault tolerance.

Also, data can be cached/persisted in up to two nodes. As a rule of thumb, we should cache an RDD if it
is parent of more than one RDD.

11.9 Distinguish between narrow and wide dependencies

� Narrow dependencies: In these dependencies, each partition of the parent RDD is used by at most one
partition of the child RDD. This means that the data required for a single partition in the child RDD can
be found within a single partition of the parent RDD. Examples of operations with narrow dependencies
include map and �lter. Narrow dependencies allow for pipelining, reducing the overhead of data shu�ing.

� Wide dependencies: In these dependencies, each partition of the parent RDD may be used by multiple
partitions of the child RDD. This means that the data required for a single partition in the child RDD can
be spread across multiple partitions of the parent RDD. Examples of operations with wide dependencies
include groupByKey and reduceByKey. Wide dependencies require data shu�ing, which can be expensive
in terms of both time and resources.

11.10 Name the two mechanisms to share variables

� Broadcast variables: These are read-only variables that are cached on each worker node, allowing tasks
to e�ciently access large read-only data structures such as lookup tables or dictionaries.

� Accumulators: These are variables that can be updated by tasks running on worker nodes in a parallel
and fault-tolerant manner. They are typically used for counters and sums. Accumulators can be updated
only by associative and commutative operations to ensure that Spark can combine their values correctly
across multiple tasks.

11.11 Provide the Spark pseudo-code for a simple problem using RDDs

Problem: Word count using RDDs.

1 from pyspark import SparkContext

2

3 # Create a Spark context

4 sc = SparkContext("local", "WordCount")

5

6 # Read the input text file

7 text_file = sc.textFile("input.txt")

8
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9 # Split each line into words , and map each word to a (word , 1) tuple

10 word_counts = (text_file.flatMap(lambda line: line.split(" "))

11 .map(lambda word: (word , 1))

12 .reduceByKey(lambda a, b: a + b))

13

14 # Save the word count results as a text file

15 word_counts.saveAsTextFile("output")
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12 Stream Data Management

12.1 De�ne a data stream

A data stream is a dataset that is produced incrementally over time, instead of being fully available before its
processing begins.

12.2 Distinguish the two kinds of stream management systems

� Stream Processing Engines (SPE): focus on highly available near-real-time processing and scalability.
They are designed to process data non-stop, mainly using relatively simple window aggregates. They
facilitate plugging the stream to other databases. For example, Spark streaming or S4.

� Complex Event Processing (CEP): o�er rich windowing operations to de�ne indicators based on
thresholds and express complex temporal correlations or patterns. These patterns sometimes need to be
detected in long periods of time. Therefore, the system needs to keep the corresponding logs and complex
states, complicating distribution and parallelization. For example, Esper or T-Rex.

12.3 Recognize the importance of stream management

Stream management is essential for handling continuous and dynamic data sources, enabling real-time decision
making, and providing insights into the behavior of the system or environment. It is crucial in many applications,
such as monitoring and control systems, �nancial markets, network tra�c analysis, social media analysis, and
Internet of Things (IoT) environments.

12.4 Enumerate the most relevant chracteristics of streams

� The arrival rate of data is not under the control of the system. The pace is too fast to persist all data,
but sometimes it is even too fast to process every arriving element.

� The number of elements is unbounded, requiring virtually an unbounded memory. This means that drastic
reduction is needed.

� We need to keep data moving, using only volatile storage.

� Support for near-real time application, so there is a need to scale and parallelize.

� Arrival order is not guaranteed to be the same as generation order, as some data can be delayed for several
reasons.

� Imperfections must be assumed, as some data will be missing for di�erent reasons.

� There is temporal locality, having a temporal evolution of data characteristics.

� Approximate answers are acceptable, but keeping determinism.

12.5 Explain to which extent a DBMS can manage streams

Using an RDBMS is possible in some exceptional cases in which some requirements can be relaxed.
Actually, active databases were the precursors of SPEs. Active Databases have the goal of automatically

trigerring a response to monitored events such as database updates, points in time or events external to the
database. The operations provided by these databases are ECA rules, usually implemented via triggers, with
the main objective of maintaining integrity constraints and derived information.

However, they fall short for more complex aggregations oveer time. Moreover, ACID transactions encompass
a large overhead on data ingestion, hindering the capacity of processing large data streams arriving at a very
high pace.

If the arrival rate is not very high, we can use temporary tables, available in many RDBMSs, whose operations
are much faster, since they are single user and kept in memory. This allows to keep a tuple for every message
in the stream, making the table analogous to a sliding window over the stream.
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12.6 Name 10 di�erences between DBMS and SPE

DBMS SPE

Data Persistent Volatile
Access Random Sequential
Queries One-time Continuous
Support Unlimited disk Limited RAM
Order Current state Sorted

Ingestion rate Relatively low Extremely high
Temporal requirements Little Near-real-time

Accuracy Exact data Imprecise data
Heterogeneity Structured data Imperfections
Algorithms Multiple passes One pass

12.7 Characterize the kinds of queries in an SPE

We can classify stream operations attending to three independent criteria:

� Trigger: we can either keep the queries continuously running or launch them at some concrete instant.

� Outputs: the result of a query can be a set of elements, but can also be a simple boolean interpreted as
some kind of alert that detects a change in the behavior of the stream.

� Inputs: queries cna obviously be evaluated over a subset of data in the stream, which is somehow
equivalent to analysing small datasets. If we want to analyse the unbounded past stream as awhole, we
need to rely in some summary structure.

The two most characteristics queries in stream processing are:

� Window-based operations: we can see them as taking a snapshot of the stream. Then, we can perform
any operation as if we were working with a list of static messages.

The point of this is getting rid of the problem of having the data on the move. However, simply taking
a snapshot and never changing it would result oversimplistic. Thus, we take a neverending sequence of
snapshots, and perform the analysis one snapshot at a time.

Therefore, a window is de�ned by both its duration (size) and its sliding interval. If both coincide, it is
called a tumbling window.

� Binary operations: there are four possible ways of joininig relations and streams: Relation-Relation,
Relation-Stream, Stream-Relation and Stream-Stream.

Note that Stream-Stream does not make much sense, because it is very unlikely that given two streams,
the two current elements can be joined. If we want to join two streams, the most common approach is to
take a snapshot of one of them and use a Stream-Relation approach.

Also, Relation-Relation are not interesting from the point of view of stream data processing.

The two remaining options are actually the same. Then, considering Stream-Relation operations, there
are speci�c algorithms required which are di�erent from those that only deal with Relations, because one
of the inputs is not static.

12.8 Explain the two parameters of a sliding window

The window size is the interval of time in seconds for how much historical data shall be contained in RDD
before processing. The sliding interval is the amount of time in seconds for how much the window will shift.

In more plain terms: the sliding interval indicates when we process, and the window size indicates how much
time back we take into account. Note that if the interval is bigger than the size, we would be letting some data
go without processing it. This info is exempli�ed in Figure 10. In the image, the second windowed stream is
done with a tumbling window.
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Figure 10: Window parameters visualization.

12.9 Explain the three stream architectural patterns

� Stream ingestion: the objective of this pattern is to not lose any event. For this, we can use queuing
mechanisms as Kafka.

� Near-real-time event processing: the objective of this pattern is to react to events as soon as possible.

� If we have a light-weight processing system, we can use Flume.

� If the system is more complex, we might need to use a distribution approach that guarantees some
locality is needed. For this, we can use di�erent queues, with Kafka, to e�ciently distribute the data
to multiple engine instances. Complex events are characterized by:

* Pattern matching: state keeps all potential matches, using a Tree of a Non-Deterministic Finite
Automata.

* Hard to distribute

* Consider time constraints, absence of events, re-emision of events.

The groupings de�ned for complex topologies can be:

* Shu�e grouping: random.

* Fields grouping: same value, same task.

* All grouping: broadcast to all tasks.

* Global groupin: all data to a single task.

* None grouping: execution stays in the thread of origin of data, whenever possible.

* Direct grouping: producers direct the output to concrete prede�ned tasks.

12.10 Explain the goals of Spark streaming architecture

Spark Streaming is an extension of the core Spark API, designed to handle near-real-time data processing by
dividing incoming data streams into small batches and processing them using Spark's core engine. The goals of
Spark Streaming architecture are as follows:

� Scalability: To handle high volumes of data and scale horizontally across multiple nodes, providing the
ability to process large data streams in parallel.

� Fault-tolerance: To ensure data reliability and system resiliency by providing mechanisms like data
replication, lineage information, and checkpointing, which help recover from failures without losing data
or computation progress.
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� High-throughput: To e�ciently process large amounts of data with minimal latency, enabling near-
real-time processing and analytics for various use cases.

� Uni�ed programming model: To o�er a single programming model for both batch processing and
stream processing, simplifying the development and maintenance of applications that involve both types
of processing.

� Integration with the Spark ecosystem: To leverage the existing Spark ecosystem, including libraries
like MLlib for machine learning, GraphX for graph processing, and SQL support through Spark SQL,
allowing users to combine multiple types of data processing and analytics within a single application.

� Ease of use: To provide an accessible API that makes it easy for developers to build and deploy streaming
applications, enabling them to focus on the application logic rather than the complexities of distributed
computing.

� Flexibility: To support various data sources, sinks, and processing patterns, allowing developers to build
a wide range of applications for di�erent domains and use cases.

12.11 Draw the architecture of Spark streaming

12.12 Identify the need of a stream ingestion pattern

The need for a stream ingestion pattern arises when you have to:

1. Capture and store high-velocity data streams from various sources.

2. Ensure data durability and availability for processing.

3. Handle backpressure and avoid data loss due to sudden spikes in data rates.

4. Manage data partitioning and replication for fault tolerance.

12.13 Identify the need of a near-real time processing pattern

The need for a near-real-time processing pattern arises when you have to:

1. Process data as it arrives, providing quick insights and enabling real-time decision-making.

2. Respond to events or anomalies in the data immediately.

3. Continuously update the application state based on incoming data.

4. Handle large-scale data streams with low latency requirements.

12.14 Identify the kind of message exchange pattern

The kind of message exchange pattern depends on the speci�c use case and system requirements. Common
patterns include:

1. Publish-subscribe: Producers publish messages to a shared topic, and consumers subscribe to topics to
receive messages.

2. Point-to-point: Producers send messages directly to speci�c consumers, with each message consumed
by a single consumer.

3. Request-reply: A synchronous pattern where the sender expects a response for each sent message.

72



12.15 Simulate the mesh-join algorithm 12 STREAM DATA MANAGEMENT

12.15 Simulate the mesh-join algorithm

12.16 Estimate the cost of the mesh-join algorithm

12.17 Use windowing transformations in Spark streaming

1 from pyspark.streaming import StreamingContext

2 from pyspark import SparkContext

3

4 # Initialize Spark context and streaming context with a batch interval of 1 second

5 sc = SparkContext("local [*]", "WindowedWordCount")

6 ssc = StreamingContext(sc, 1)

7

8 # Set checkpoint directory for fault tolerance

9 ssc.checkpoint("checkpoint")

10

11 # Read data from a text stream

12 lines = ssc.socketTextStream("localhost", 9999)

13

14 # Split lines into words and create pairs (word , 1)

15 words = lines.flatMap(lambda line: line.split(" ")).map(lambda word: (word , 1))

16

17 # Reduce word pairs within a window of 10 seconds and sliding interval of 2 seconds

18 windowed_word_counts = words.reduceByKeyAndWindow(lambda a, b: a + b, lambda a, b: a - b,

windowDuration =10, slideDuration =2)

19

20 # Print the word counts within the window

21 windowed_word_counts.pprint ()

22

23 # Start the streaming context and wait for it to terminate

24 ssc.start ()

25 ssc.awaitTermination ()

In this example, we �rst create a DStream from a socket text stream. We then split each line into words
and create key-value pairs for each word. The key is the word itself, and the value is 1, representing a single
occurrence of the word.

We then use the reduceByKeyAndWindow function to calculate the word count within a sliding window.
In this case, the window duration is set to 10 seconds, and the slide duration is set to 2 seconds. The reduce-
ByKeyAndWindow function takes two lambda functions as arguments - the �rst one is used to add the values
when a new RDD enters the window, and the second one is used to subtract the values when an RDD exits the
window.

Finally, we print the word counts within the window using the pprint function and start the streaming
context. The streaming context will run until terminated by the user or an error occurs.
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13 Data Stream Analysis

13.1 Explain the di�erence between generic one-pass algorithms and stream pro-
cessing

One-pass algorithms and stream processing are both designed to handle data that can't be stored in its entirety
due to its size. However, they di�er in their approach and speci�c use cases. A one-pass algorithm, as the name
suggests, processes the data in one pass, typically reading from a dataset that's stored in a �le or a database. It
aims to make the best decision or computation at each step with the information available, without the ability
to revisit the data.

Stream processing, on the other hand, is a type of computing that deals with continuously incoming data
streams. It processes the data on-the-go, often in real-time or near-real-time, without waiting for all data to
arrive or be stored. Stream processing can handle 'in�nite' data streams, which are never-ending and timely,
while one-pass algorithms are generally used with '�nite' data sets.

13.2 Name the two challenges of stream processing

1. Limited computation capacity: Stream processing involves real-time or near-real-time processing of data.
The rate at which the data arrives might exceed the processing capability of the system, causing data loss
or delayed processing.

2. Limited memory capacity: In stream processing, data is continuously arriving. The system might not
have enough memory to store all arriving elements, especially if the data arrival rate is very high, posing
a challenge to keep track of the entire history of the stream.

13.3 Name two solutions to limited processing capacity

1. Probabilistically drop some stream elements through uniform random sampling on the stream. A widely
known technique is Load shedding.

2. Filter out some elements of the stream based on some characteristic of the data. For example, using
Bloom �lters.

13.4 Name three solutions to limited memory capacity

1. Focus on only part of the stream, ignoring the rest, by means of a Sliding window.

2. Weight the elements of the stream depending on their position, so that we can keep track of the aggregate
without keeping each and every element. Moreover, if we are not interested in the elements not present
in the stream recently, we can de�ne a threshold to �lter them out. This is done with an exponentially
decaying window.

3. Keeping a summary structure that allows to approximate the response to some queries. These structures
are usually called Synopsis.

13.5 Decide the probability of keeping a new element or removing an old one
from memory to keep equi-probability on load shedding

If there are p memory positions and we have seen n elements in the stream, then the probability of keeping the
new element n+ 1 is

Prin =
p

n+ 1
,

and if it is kept, then we remove elements from memory with probability

Prout =
1

p
.
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13.6 Decide the parameters of the hash function to get a representative result on
load shedding

We should take a hash function mapping to a large number of values, M , and keep only elements mapping to
a value below t. We dynamically reduce t as we run out of memory.

13.7 Decide the optimum number of hash functions in a Bloom �lter

If the �lter has n bits and we expect to have m di�erent key values, then the optimal amount of hash functions
is

k =
n

m
log 2.

13.8 Approximate the probability of false positives in a Bloom �lter

The probability of false positives is around

PrFP =
(
1− e−

km
n

)k
,

where n is the size of the �lter, m is the number of keys and k is the number of hash functions. In the case of
optimal k, it is

PrFP =

(
1

2

)k

∼ 0.618
n
m .

13.9 Calculate the weighted average of an attribute considering and exponentially
decaying function

AvgT+1 =

T+1∑
i=0

ai (1− c)
T+1−i

=

(
T∑

i=0

ai (1− c)
T−i

)
· (1− c) + aT+1 = AvgT · (1− c) + aT+1,

where c is a small constant, T is the current time, at is the element at time t or 0 if there is no element, and
g (T − t) = (1− c)

T−t
is the weight at time T of an item obtained at time t.

13.10 Decide if heavy hitters will show false positives

It is possible to show false positives, depending on the stream.
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14 Big Data Architectures

14.1 Explain the problem of a spaguetti architecture

In Big Data contexts, it is common to �nd di�erent requirements for di�erent tasks, as well as di�erent tools
that provide means to perform these tasks, with di�erent capabilities. Therefore, we can have di�erent tasks
spread over di�erent independent and heterogeneous systems. For example, just looking at Hadoop, we �nd
HDFS and HBase for storage, HCatalog for modeling, Sqoop for ingestion, Spark for processing and SparQL
for querying.

The spaguetti architecture arises when we solve our tasks' requirements one by one, �nding what we consider
the best option for that speci�c task at each moment. This implies that we will end up using tens of di�erent
tools, making integration more costly, creating arti�cially complex pipelines and di�culting the scalability of
the system as a whole. Therefore, architectural designs arise to avoid this problem.

14.2 Explain the need of the Lambda Architecture

The Lambda Architecture addresses the problem of computing arbitrary functions on arbitrary data in real-time
by combining both batch and stream processing methods. This makes it possible to handle both low-latency
real-time data and keep the bene�ts of batch processing for more complex analytics.

Batch layer stores all incoming data and allows for computation over large data sets, while the speed layer
deals with recent data to provide real-time views. This allows the system to provide precomputed views from
the batch layer and recent data views from the speed layer, meeting the demands of both latency and accuracy.

14.3 Explain the di�erence between Kappa and Lambda Architectures

The Lambda Architecture includes two layers, the batch and the speed layer, while the Kappa Architecture only
uses a streaming layer. Lambda uses batch processing for handling large data sets and stream processing for
real-time data, while Kappa uses stream processing for all data. Kappa Architecture is often simpler because
it only requires maintaining one system, but it may not be suitable for all kinds of computations, especially for
those that are naturally easier to express as batch computations.

14.4 Justify the need of a Data Lake

The main idea of a Data Lake is Load-�rst,Model-later. In traditional analytical frameworks, the approach
is to model the schema beforehand, in a Model-�rst,Load-later manner. This approach restricts the potential
analysis that could be done in the data, since all information that is not compliant with the de�ned schema is
lost. Therefore, the idea is to store the raw data and then create on-demand views of this raw data to handle all
analysis that we might need in the future. The problems of this approach, usual in traditional Data Warehouses
systems are that the transformations become permanent, the schema is �xed and that the users of the data need
to comply with the schema as well, imposing them to learn the schema, what can be done, and what cannot
(high entry barriers).

14.5 Identify the di�culties of a Data Lake

If we don't organize properly the Data Lake, then it could become really hard to track all the data that is
stored in it, e�ectively transforming the Data Lake into what is called a Data Swamp. The second problem
is that, since each required analysis will need speci�c processing, it is easy to end up having lots of di�erent
transformation pipelines, which are very case-speci�c and can be hard to reuse.

14.6 Explain the need of each component in the Bolster Architecture

The Bolster Architecture is a reference architecture for Big Data systems. It was designed to facilitate the design
of Big Data systems in multiple organizations and performed by a research-oriented team. The architecture is
based on two families of Big Data architectures and leverages the Big Data dimensions (the �ve "V's") and the
requirements de�ned for each of them.

The Bolster Architecture consists of several components, each with a speci�c function:
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� Semantic Layer: This layer contains the Metadata Management System (MDM), which is responsible
for providing the other components with the necessary information to describe and model raw data, as
well as keeping the footprint about data usage. The MDM contains all the metadata artifacts, represented
by means of RDF ontologies leveraging the bene�ts provided by Semantic Web technologies, needed to
deal with data governance and assist data exploitation.

� Batch Layer: This layer stores a copy of the master data set in raw format as data are ingested. This
layer also pre-computes Batch Views that are provided to the Serving Layer.

� Speed Layer: This layer ingests and processes real-time data in the form of streams. Results are then
stored, indexed, and published in Real-time Views.

� Serving Layer: Similarly to the Speed Layer, this layer also stores, indexes, and publishes data resulting
from the Batch Layer processing in Batch Views.

The Bolster Architecture addresses the two main drawbacks identi�ed in the λ-architecture: it considers Variety,
Variability, and Veracity as �rst-class citizens and re�nes the λ-architecture to facilitate its instantiation. These
changes boil down to a precise de�nition of the components and their interconnections.

14.7 Map the components of the Bolster Architecture to the RDBMS Architec-
ture

The Semantic Layer in the Bolster Architecture, which contains the Metadata Management System (MDM), can
be compared to the system catalog in an RDBMS. The MDM stores machine-readable semantic annotations,
similar to how the system catalog in an RDBMS stores metadata about the database.

The Batch Layer, Speed Layer, and Serving Layer in the Bolster Architecture handle data storage and
processing. These layers can be compared to the data storage and processing components of an RDBMS.

The Batch Layer stores a copy of the master data set in raw format as data are ingested and pre-computes
Batch Views that are provided to the Serving Layer. This is similar to how an RDBMS stores and processes
data.

The Speed Layer ingests and processes real-time data in the form of streams. Results are then stored,
indexed, and published in Real-time Views. This can be compared to the real-time data processing capabilities
of some RDBMSs.

The Serving Layer stores, indexes, and publishes data resulting from the Batch Layer processing in Batch
Views. This is similar to how an RDBMS stores, indexes, and retrieves data.

However, it's important to note that the Bolster Architecture and an RDBMS have di�erent purposes and
are designed to handle di�erent types of data and workloads. The Bolster Architecture is designed for Big
Data systems, which often involve processing large volumes of unstructured or semi-structured data, while an
RDBMS is typically used for structured data and transactional workloads.

14.8 Given a use case, de�ne its software architecture
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15 In-Memory Columnar Databases (New Relational Architecture)

15.1 Justify the viability of in-memory databases

In-memory databases store data in the main memory (RAM) of a computer rather than on disk, which results
in much faster access times and thus faster query processing. Here are some reasons justifying their viability:

� Increased performance: Accessing data in memory is orders of magnitude faster than disk-based storage,
reducing response times for data retrieval and analysis.

� Real-time analytics: In-memory databases can handle complex queries and perform transactions in real-
time, which is crucial for applications requiring immediate insight, like �nancial trading systems or telecom-
munications networks.

� Scalability: Modern systems provide capabilities to distribute data across multiple servers, allowing in-
memory databases to scale horizontally to accommodate larger data sets.

� Reduced complexity: Because data is stored in memory, there is no need to maintain indexes or per-
form complex optimizations that are typically required with disk-based databases, simplifying database
management.

However, it's worth noting that in-memory databases also have their trade-o�s. They can be more expensive
due to the cost of RAM, and they can also face challenges with data persistence, as data in memory is volatile.
But these challenges can often be overcome with techniques like database replication and persistent storage
backups.

15.2 Explain the principles of NUMA architecture

NUMA (Non-Uniform Memory Access) is a computer memory design used in multiprocessing, where the memory
access time depends on the memory location relative to the processor. Under NUMA, a processor can access its
own local memory faster than non-local memory (memory local to another processor or memory shared between
processors). This facilitates scaling up by growing a single machine. There are two main trade-o�s:

� The smaller the memory, the less latency and higher bandwidth.

� The more performant the memory, the more expensive it is.

Also, this architecture allows parallelism in the di�erent cores and CPUs.
This architecture is also much faster and expensive than a cluster of shared-nothing machines, but it's clear

that they are also much harder to manage if we want to push it to its full potential. The principles of NUMA
are:

� Local Memory: Each processor in a NUMA architecture has its own local memory. When a processor
needs to access data from its own local memory, it can do so quickly.

� Non-local Memory: When a processor needs to access memory that isn't local (i.e., memory that is
attached to a di�erent processor), it can take longer. This is because the processor must go over the
interconnect bus to reach the memory associated with the other processor.

� Processor Interconnect: The processors in a NUMA system are connected through an interconnect bus.
This interconnect can be used to share data between processors.

� Scalability: NUMA architecture is designed to scale. As more processors are added, more local memory
is added to the system, potentially improving overall system performance.

NUMA architectures are used in systems with large numbers of processors, providing bene�ts over traditional
symmetric multiprocessing (SMP) systems. However, to get the best performance from a NUMA system,
software (like a database management system) should be NUMA-aware and designed to minimize non-local
memory accesses.
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15.3 Enumerate 3 techniques to optimize cache usage

1. Locality awareness: aims at reducing the number of idle CPU cycles waiting for the arrival of data.
The system can bene�t from spacial locality, i.e., there is a high chance of accessing data contiguous to
data already accessed; and temporal locality, i.e., there is a high chance of accessing data that has been
recently accessed.

2. Flexible caching: has the purpose of bringing and keeping as much relevant data as possible in cache. It
is related to associativity which describes how di�erent blocks of memory map to the same cache location.
A fully associative cache allows a memory block to be placed in any cache location. This �exibility allows
the cache to store more relevant data, but it comes at the cost of increased complexity and slower lookup
times. Therefore: low associativity facilitates searching, since a disk block can only be found in few places,
but complicates replacement. High associativity facilitates replacement, but makes it more di�cult for
searching.

3. Cache-concious design: this is relevant for DBMS developers, that need to be aware of cache line size,
to only use multiple of that size in the code, optimizing access to data.

15.4 Give 4 arguments supporting columnar storage

� Higher data compression ratios. Columnar storage allows for better data compression, as the data stored
in a column is usually of the same type, leading to a high degree of redundancy. Techniques like run-length
encoding, dictionary encoding, and bitmap encoding can be applied for more e�ective data compression.

� Higher performance for column operations. Columnar storage is ideal for OLAP (Online Analytical
Processing) queries which typically scan and aggregate over a small subset of the total columns in the
table. Since data is stored column-wise, it can lead to signi�cant IO reduction and faster execution times.

� Parallelization. Columnar storage enables e�cient parallel processing, as operations can be performed on
individual columns independently. This allows for more e�cient use of modern hardware architectures,
including multi-core CPUs and vectorized instruction sets.

� Elimination of additional indexes.

15.5 Explain 3 classical optimization techniques in RDBMS related to column
storage

� Vertical partitioning: each table can be split as a set of two-column partitions (key, attributes), which
improves useful reads ratio. This helps in optimizing query performance by reducing the amount of data
scanned for a particular query. If a query only requires a subset of the total columns in a table, it's more
e�cient to scan a vertically partitioned table that contains only those necessary columns.

� Use index-only query plans: we can create a collection of indexes that cover all columns used in a query,
so no table access is needed.

� Use a collection of materialized views, such that there is a view with exactly the columns needed to answer
the queries.

15.6 Sketch the functional architecture of SanssouciuDB

15.7 Explain 4 optimizations implemented in SanssouciuDB to improve data ac-
cess

� Use stored procedures.

� Data ages by dynamic horizontal partitioning, depending on the lifecycle of objects. By default, only
active data is incorporated into query processing. The de�nition of active data is given by the application.

� Modi�cations are performed on a di�erential bu�er, with a merge process carried out per table. This
implies decompressing the table and compressing everything back again. This is done on-line.
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� There are append-only tables, being timepoint representation for OLTP and interval representation for
OLAP.

15.8 Explain how to choose the best layout

We should choose columnar storage when:

� Calculations are executed on a single column or a few columns only.

� The table is searched based on the values of a few columns.

� The table has a large number of columns.

� The table has a large number of rows, and columnar operations are required.

� The majority of columns contain only a few distinct values, resulting in high compression rates.

We should choose row storage when:

� The table has a small number of rows, such as con�guration tables.

� The application needs to process only a single record at a time (many selects of updates of single records).

� The application typically needs to access the complete records.

� The columns contain mainly distinct values, so compression rates would be low.

� Aggregations and fast searching are not required.

15.9 Identify the di�erence between column-stores and NOSQL related to trans-
actions

In column-stores, we avoid replication management by only storing atomic data, relying on the performance
obtained in aggregate queries. With on-the-�y aggregation, the aggregate values are always up-to-date. Also,
we reach this way higher concurrency, since we can aggregate di�erent measures concurrently for di�erent
columns. We can still replicate some small and static tables. Since these systems provide full ACID support,
the consistency is strong, in a eager/secondary-copy synchronization mechanism scheme.

15.10 Explain 3 di�culties of pipelining in column-stores

1. Short process trees: In column-stores, operations are often applied to each column independently, which
can result in a shallow process tree (with few levels of nested operations). This can limit the opportunities
for pipelining, as each operation may complete quickly and there may be fewer opportunities to overlap
operations.

2. Some operators need all input data at once: Certain operators, like sort or aggregate, need to process
the entire input column before they can produce any output. This can make it more di�cult to pipeline
operations, as you have to wait for these operators to complete before passing their output to the next
operator in the pipeline.

3. Skewed cost of operations: In column-stores, the cost of operations can vary signi�cantly depending
on the speci�c column and operation. For example, operations on a column with a high cardinality (many
unique values) or a large amount of data may be more expensive than operations on a column with low
cardinality or less data. This skew can make it harder to evenly distribute work across a pipeline and
maintain high throughput.
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15.11 Explain 3 problems to implement parallelism in in-memory column-stores

1. High startup cost: Parallelism involves dividing a task among multiple processing units. However, there
is a startup cost associated with setting up these parallel tasks, including the time to divide the task and
synchronize the results. If the tasks are too small or the number of tasks is too high, the overhead of
managing these tasks can outweigh the bene�ts of parallel execution.

2. Contention (at harware level): Parallel tasks often need to access shared resources, such as memory or
input/output devices. If multiple tasks try to access these resources at the same time, they can interfere
with each other, leading to contention. This can degrade performance and limit the e�ectiveness of parallel
execution.

3. Skewness: refers to a situation where the data or the workload is not evenly distributed across the tasks.
For example, if one task gets assigned a larger portion of the data or a more complex operation, it can
take longer to complete than the other tasks. This can cause the other tasks to sit idle while waiting for
the skewed task to complete, reducing the overall e�ciency of parallel execution.

15.12 Explain 5 query optimization techniques speci�c to columnar storage

� Late materialization: In column-stores, a query result is usually composed by combining values from
multiple columns. With late materialization, the database delays combining these values as long as
possible. This allows the database to operate on smaller amounts of data, which can signi�cantly improve
performance for queries that only need a subset of a table's columns.

� Tuples are identi�ed by position: In columnar databases, tuples (or rows) are often identi�ed by
their position in the column rather than by a unique key. This allows the database to directly access
the relevant data in each column without having to perform an additional lookup, which can improve
performance.

� Column-speci�c compression techniques: Because all the values in a column are of the same type,
columnar databases can use specialized compression techniques that take advantage of this uniformity.
Techniques such as dictionary encoding, run-length encoding, and bitmap encoding can achieve high
compression rates and improve query performance by reducing I/O.

� Block iteration: Columnar databases often store data in blocks, each containing a subset of a column's
values. By iterating over these blocks instead of individual values, the database can reduce CPU cache
misses and improve performance. Values inside a block can be iterated as in an array (they are �xed-
width), codi�ed/compressed together, and exploited for parallelism of pipelining. When we combine block
iteration with late materialization, we are doing what is called vectorized query processing.

� Speci�c join algorithms: Joining tables is a common operation in relational databases. In columnar
databases, join operations can be optimized by using algorithms that take advantage of the columnar
storage format. For example, a hash join can be more e�cient in a columnar database because it operates
on individual columns and can take advantage of column-speci�c compression.

15.13 Given a data setting, justify the choice of either row or column storage

15.14 Given the data in a column, use run-length encoding with dictionary to
compress it
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