
BDM-MIRI - Semantic Data Management

Jose Antonio Lorencio Abril

Spring 2023

Professors: Anna Queralt, Óscar Romero

Student e-mail: jose.antonio.lorencio@estudiantat..upc.edu

1

This is a summary of the course Semantic Data Management taught at the Universitat Politècnica de
Catalunya by Professors Anna Queralt and Óscar Romero in the academic year 22/23. Most of the content of
this document is adapted from the course notes by Abelló and Nadal, [1], so I won't be citing it all the time.
Other references will be provided when used.

2

CONTENTS CONTENTS

Contents

I Property Graphs 6

1 Property Graphs 6
1.1 De�nitions . 6
1.2 Traversal Navigation . 7
1.3 Graph operations . 7

1.3.1 Topological queries . 7
1.4 Property Graph Patterns . 8

1.4.1 Evaluating graph patterns . 9
1.4.2 Semantics of a match . 9

2 Graph Query Languages 11
2.1 Types of queries . 11
2.2 Popular languages . 12

2.2.1 Cypher . 12
2.2.2 GQL . 13

3 Graph Processing 13
3.1 Dijkstra's algorithm . 15
3.2 Pattern Matching . 15
3.3 Complex Graph Processing . 16

3.3.1 Graph Metrics . 16
3.3.2 Graph Processing Pipelines . 16
3.3.3 Graph Embeddings . 16

4 Graph Databases 17
4.1 Implementation of Graph Databases . 17

4.1.1 Incidence Lists . 17
4.1.2 Adjacency Lists . 19
4.1.3 Incidence Matrix . 20
4.1.4 Adjacency matrix . 20

4.2 Types of Graph Databases . 21

5 Distributed Graph Processing 22
5.1 Distributed Graph Storage . 22
5.2 TLAV Frameworks . 22

5.2.1 Synchronized TLAV . 23
5.2.2 TLAV: Graph Distribution . 25
5.2.3 Deepening into TLAV . 27

II Knowledge Graphs 30

6 Introduction to Knowledge Graphs 30

7 Resource Description Format (RDF) 32
7.1 RDF Modeling . 33
7.2 RDF-star . 33

8 RDF Schema (RDFS) 33
8.1 RDFS statements at the schema level . 34
8.2 RDFS Core Classes . 34
8.3 RDFS Inference . 34
8.4 RDFS Core Properties . 35

3

CONTENTS CONTENTS

8.5 SPARQL . 37
8.5.1 Entailment Regimes . 39

8.6 RDFS Inference Rules . 39
8.6.1 The RDFS Paradox . 40

9 Ontology Languages: Description Logics 41
9.1 Logic Based Ontology Languages . 41
9.2 TBOX . 42
9.3 ABOX . 44
9.4 Models of a Description Logics Ontology . 45

9.4.1 TBOX Reasoning . 46
9.4.2 Reasoning complexity . 46
9.4.3 Ontology Reasoning . 46
9.4.4 Modeling with Description Logics . 47

10 Ontology Web Language (OWL) 47
10.1 OWL Axioms . 48
10.2 OWL Constructs . 48
10.3 OWL Implementation . 49
10.4 OWL 2.0 Pro�les . 49

11 Graph-Based Virtual Data Integration 49
11.1 Local-As-View (LAV) Integration - Ontology-Mediated Queries (OMQ) 50

11.1.1 Big Data Integration Ontology . 50
11.2 Query Answering - Rewriting Algorithm . 52

11.2.1 Computational Complexity . 53

4

LIST OF FIGURES LIST OF ALGORITHMS

List of Figures

1 Example knowledge graph from [1]. 30
2 Examples of data linkage from [1]. 30
3 Three layers of abtraction of RDFS from [1]. The red arrows are rdf:type relationships. 35

List of Tables

List of Algorithms

1 Dijkstra(WeightedGraph G, SourceNode U) . 16

5

1 PROPERTY GRAPHS

Part I

Property Graphs

1 Property Graphs

1.1 De�nitions

Property graphs were born in the database community, with the idea of enabling the possibility to query and
process data in graph form. Up to date, there is not any o�cial standard.

Property graphs are ocurrence-based, which means that they are de�ned by the particular instances
inserted, without a pre-existent enforceable schema. The instances are represented by two main constructs:

� Nodes: represent entities.

� Edges: relate pairs of nodes, and may represent di�erent types of relationships.

Both nodes and edges might be labeled and can have a ser of properties, represented as attributes1. In
addition, edges can be de�ned to be directed or undirected. Moreover, multi-graphs are allowed, meaning that
two nodes can be related by multiple edges.

More formally:

De�nition 1.1. A property graph, G, is a tuple (V,E, ρ, λ, σ, Lab, Prop, V al), where:

1. V is a �nite set of vertices.

2. E is a �nite set of edges, such that V and E have no elements in commona.

3. Lab is a set of labels.

4. Prop is a set of properties and V al is the set of possible values that the properties can take.

5. ρ : E → V × V is a total functionb. Basically, ρ assigns each edge e ∈ E to the pair of nodes that
it relates, (u, v) ∈ V × V . Usually, ρ (e) = (u, v) means that edge e starts in u and ends in v.

6. λ : (V ∪ E) → Lab is a total function. Now, for each vertex and each edge, we assign a label to itc.

7. σ : (V ∪ E)×Prop → V al is a partial functiond. Here, we are assigning the values of each property
of each node/edge.

aUsually, we will identify vertices and edges by their key identi�er. Thus, this condition means that a key represents
either a node or an edge, but not both at the same time.

bA total function is a function f : Dom → Im such that ∀x ∈ Dom,∃y ∈ Im|f (x) = y.
cIn some de�nitions, it is possible to assign a set of labels, so that λ : (V ∪ E) → 2Lab.
dA partial function is a function that is not necessarily total.

Example 1.1. A simple graph.

In this example, we have the visual representation of a simple graph. Let's create each of the components
of the formal de�nition:

1In some de�nitions, edges are not allowed to have attributes.

6

1.2 Traversal Navigation 1 PROPERTY GRAPHS

� V = {n1, n2, n3}.

� E = {e1, e2, e3}.

� Lab = {Person,Movie, acts_in, directs}.

� Prop = {name, gender, title, role, ref}.

� V al = {Clint Eastwood,Anna Levine,male, female, Unforgiven,Bill,Delilah, IMDb}.

� λ (n1) = Person, λ (n2) = Movie, λ (n3) = Person, λ (e1) = acts_in, λ (e2) = directs, λ (e3) = acts_in.

� σ (n1, name) = Clint Eastwood, σ (n1, gender) = male, σ (n2, title) = Unforgiven, σ (n3, name) = Anna Levine,

σ (n3, gender) = female, σ (e1, role) = Bill, σ (e1, ref) = IMDb, σ (e3, role) = Delilah, σ (e3, ref) =
IMDb.

1.2 Traversal Navigation

The graph traversal pattern is de�ned as the ability to rapidly traverse structures to an arbitrary depth and
with an arbitrary path description.

This framework is totally opposite to set theory, on which relational databases are based on. In the relational
theory, this is equivalent to joining data and selecting data, while in a graph database, the relationships are
explicit (there no foreign keys), there is no need to add nodes for arti�cial concepts and we can consider the joins
as being hard-wired in the data. This makes traversing from one node to another a constant time operation.

Traversing graph data depends on three main variables:

� The query topology, which refers to the complexity of what are we looking for, and the traversal
seeds, which are the way in which the search is started.

� The size of the graph, typically measured as the number of edges.

� The topology of the graph.

1.3 Graph operations

There are basically two types of operations:

� Content-based queries: in these queries, the value is relevant. We want to get a speci�c node, or the
value of some attributes of a node/edge, etc. For example, aggregations.

� Topological queries: in this case, only the topology of the graph is considered. Several business problems
are solved using graph algorithms exploring the graph topology. For example, computing the betweenness
centrality of a node.

� Hybrid approaches: leverage both types of queries.

Of these types, we are going to focus on topological queries.

1.3.1 Topological queries

Adjacency queries

Two nodes are adjacent if there is an edge between them (usually disregarding direction). Therefore, the
adjacency of a node is de�ned as all nodes adjacent to it:

Adjacency (n) = N |ni ∈ N ⇐⇒ ∃e : ρ (e) = (ni, n) ∨ ρ (e) = (n, ni) .

The computational cost of this operation is linear on the number of edges to visit.
Examples of use cases are �nding all friends of a person, airports with direct connection,...

7

1.4 Property Graph Patterns 1 PROPERTY GRAPHS

Reachability queries

A node is reachable from another node if there is a set of edges, called a walk, that can be traversed to get from
one to the other (in this case, direction is usually taken into account, but it could be disregarded if needed).
Now, the de�nition is as follows:

Reachability (nor, ndest) = True ⇐⇒

∃Walk (nor, ndest) = (e1, ..., em) |∃n1, ..., nm−1 : ρ (e1) = (nor, n1) , ρ (e2) = (n1, n2) , ..., ρ (em) = (nm−1, ndest) .

Additional constraints can be de�ned:

� Fixed-length paths: we can �x the number of edges and nodes of the walk.

� Shortest path: �nd the walk that minimizes some metric, such as the number of hops or the sum of weights
of the edges,...

� Non-repeated nodes: in this case the walk is called a path.

� Non-repeated edges: in this case the walk is called a trail. Note that a path is more restrictive than a
trail.

� Regular simple paths: we can restrict the path to respect some regular expression.

The computational cost is high for large graphs, and it also depends on what constraints are we imposing. For

instance, if we want to compute the shortest path, we can use Dijkstra's algorithm, which is O
(
|V |2

)
, or

O (|E| · |V | log |V |) using priority queues.
Examples of use cases are �nding all friends of a friend, all �ight connections,...

Label-constrained reachability

We compute reachability, imposing that all edges in the walk have a label in a de�ned set of labels:

G∗
L = {(s, t) |∃p ∈ paths (s, t) such that λ (e) ∈ L,∀e ∈ p} .

Another way to see this is that we are trying to determine all pairs of nodes such that there is a path between
them such that the concatenation of the edge labels along the path forms a string in the language denoted by
the regular expresion (l1 ∪ ... ∪ ln)

∗, where L = {l1, ..., ln}.
Typically, the allowed topology and labels involved are expressed as a regular expression. In general, this

problem is known to be NP-complete.

Pattern matching

In this case, we want to �nd all subgraphs that follow a given pattern. More formally, we have G = (V,E) and
a pattern P = (Vp, Ep) and we want to �nd all G′ = (V ′, E′) such that V ′ ⊂ V,E′ ⊂ E and P ∼= G′, i.e., P and

G′ are isomorphic, i.e., there are biyections V ′ f1→ Vp and E′ f2→ Ep.
This problem is also NP-complete.
Examples of use cases are �nding all groups of cities such that all of them are directly connected by �ights

(�nd cliques),...

1.4 Property Graph Patterns

Among the operations that we have seen so far, it is interesting, in the context of property graphs, to focus on
pattern matching. Now, we use basic graph patterns (bgps), which are equivalent to conjunctive queries,
and are a property graph where variables can appear in place of any constant.

A match for a bgp is a mapping from variables to constants, such that when the mapping is applied to the
bgp, the result is a subgraph of the original graph.

The results for a bgp are all mappings from variables in the query to constants that comprise a match.

Example 1.2. A simple pattern matching. Assume we have the same graph we used before:

8

1.4 Property Graph Patterns 1 PROPERTY GRAPHS

And the following bgp:

Here, I have coloured variables in red, and left constant in black.
Let's see some matches:

And so on...

1.4.1 Evaluating graph patterns

Now, we are going to formalize a bit the intuition built in the previous explanation and example. Evaluating a
bgp P , against a graph G corresponds to listing all possible matches of P with respect to G:

De�nition 1.2. Given an edge-labelled graph G = (V,E) and a bgp P = (V ′, E′), a match of P in G
is a mapping

h : Const ∪ V ar → Const

such that:

1. For each constant a ∈ Const, h (a) = a, i.e., constants are preserved.

2. For each edge (b, l, c) ∈ E′, we have (h (b) , h (l) , h (c)) ∈ E. This imposes that

(a) Each edge of P is mapped to an edge of G.

(b) The structure of P is preserved in its image under h in G.

1.4.2 Semantics of a match

Matches can be de�ned using di�erent semantics on what we consider equivalent graphs, and what conditions
the function h have to meet:

� Homomorphism-based semantics: multiple variables in P can map to the same constant in G (h
is not necessarily inyective). This correspondes to the familiar semantics of select-from-where queries in
relational databases.

� Isomorphism-based queries: we add the constraint that h must be inyective.

9

1.4 Property Graph Patterns 1 PROPERTY GRAPHS

Nonetheless, there are intermediate solutions:

� Strict isomorphism: corresponds to the isomorphism-based queries, in its stricter sense. h is inyective.

� No repeated-node semantics: h is only inyective for nodes.

� No repeated-edge semantics: h is only inyective for edges.

10

2 GRAPH QUERY LANGUAGES

2 Graph Query Languages

Graph Query Languages are declarative languages used to query a graph. Typically, a GQL matches an
extended version of pattern matching, and each database engine chooses �x semantics for it, not existing a
common agreement nor standard. There are also APIs provigin implementation of graph metrica or label-
constrained shortest path, which, depending on the metric or algorithm chosen, maps to adjacency, reachability
or pattern matching.

2.1 Types of queries

There are di�erent types of queries, each of them using a di�erent access plan:

� Adjacency queries: neighbourhood queries require accessing the basic data structure and navigate it.
Thus, their performance depends on the database implementation and the speci�c query, as the time to
�nd a node or edge depends on this implementation.

� Regular path queries: combine pattern matching and reachability and require speci�c graph-oriented
algorithms. They are equivalent to conjunctive queries. They are also called navigational graph patterns.

RPQs extend the bgp de�nition by allowing regular expressions on edges to describe path queries in a
pattern, i.e., a path is described as

x
α→ y over G,

where x, y are nodes in G and α is a regular expression over Lab. The regular expressions di�er from
language to language. Some usual expressions are:

� The Kleene star *: 0 or more ocurrences.

� The Kleene plus +: 1 or more ocurrences.

� Concatenation ◦
� Inverse −

� Union |:
� Combinations of them and the labels in Lab.

Example 2.1. Some simple RPQs. In our previous example, we can de�ne some simple RPQs:

� Find all co-actors of all actors:

� Retrieve all actors you can reach by transitively following the co-actoring relationship, at least once:

� Complex graph patterns: add further expressivity beyond conjunctive queries, such as groupings, ag-
gregations and set operations. The previous RPQs are equivalent to conjunctive queries without projec-
tions, but database languages are richer than this, enforcing GQLs to implement more complex semantics.
GraphQL was the �rst graph algebra extending RPQs with relational-like operators.

11

2.2 Popular languages 2 GRAPH QUERY LANGUAGES

2.2 Popular languages

2.2.1 Cypher

Cypher was created by Neo4j, and acts as a de facto standard, adopted by other graph databases. It is a
high-level, declarative language, providing both DDL (Data De�nition Language) and DML (Data Modi�cation
Language) capabilities, and allowing navigational graph patterns, except concatenation.

It applies pattern matching under no-repeated-edges isomorphism semantics. The available clauses are:

� DML:

� MATCH: the graph pattern to match.

� WHERE: �ltering criteria.

� WITH: divides a query into multiple distinct parts.

� RETURN: de�ne what to return.

� DDL:

� CREATE | MERGE: creates nodes and relationship. Merge does it only if it does not exist before-
hand, entailing an overhead.

� DELETE: removes nodes, relationships and properties.

� SET: set values of properties.

� FOREACH: performs updating actions once per element in a list.

Cypher applies a data pipeline, where each stage is a MATCH-WHERE-WITH/RETURN block, allowing the
de�nition of aliases to be passed between stages.

For example, uppose you have a graph database with Person nodes and two types of relationships: FRIENDS_WITH

and WORKS_WITH. You want to �nd all mutual friends of Alice and Bob who also work with someone named
Charlie. You can achieve this with the following Cypher query:

1 MATCH (alice:Person {name: 'Alice'}) -[: FRIENDS_WITH]-(mutual_friend:Person) -[: FRIENDS_WITH]-(

bob:Person {name: 'Bob'})

2 WITH mutual_friend

3 MATCH (mutual_friend) -[: WORKS_WITH]-(charlie:Person {name: 'Charlie '})

4 RETURN mutual_friend.name

In this query, we have three stages in the data pipeline:

1. MATCH (Stage 1): Match the graph pattern where Alice and Bob have mutual friends. Bind the
mutual_friend node.

2. WITH: Pass the mutual_friend node to the next stage.

3. MATCH (Stage 2): Match the graph pattern where the mutual_friend from the previous stage works
with Charlie.

4. RETURN: Return the name of the mutual friend who meets both criteria (being a mutual friend of Alice
and Bob and working with Charlie).

In this example, the WITH clause is used to separate the query into two stages. The �rst stage �nds all mutual
friends of Alice and Bob, and the second stage �lters those mutual friends to only include the ones who work
with Charlie. The use of WITH here is what enables the pipelining of stages in the query.

Example 2.2. Given the following graph:

12

3 GRAPH PROCESSING

1. Return all nodes

1 MATCH (n)

2 RETURN n;

2. Return all edges

1 MATCH () -[e]-()

2 RETURN e;

3. Return all neighbour nodes of 'John'

1 MATCH (john {name:'John '}) -[:friend]-(f)

2 RETURN john , f;

4. Return the incident nodes of all edges

1 MATCH (n1) -[e]->(n2)

2 RETURN e, n1 , n2;

2.2.2 GQL

There is an ongoing big e�ort towards stardardization of Graph Query Languages, through the GQL project.

3 Graph Processing

Exercise 3.1. Understand the relationships between the basic graph operations. Answer the following ques-
tions:

1. Is adjacency subsumed by reachability?

No, because there is no way to compute all adjacent nodes to a given node by answering reachability
queries.

2. Is adjacency subsumed by pattern matching?

Yes, the adjacency query Adjacent (x) is equivalent to the pattern matching query Match (x → y).

3. Is reachability subsumed by pattern matching?

Yes, the reachability query Reachable (x, y) is equivalent to !not_empty (Match (x →∗ y)).

Note that in the cases in which a query is subsumed in another, it makes sense to have the simpli�ed version,
which can be optimized as a simpler case of pattern matching.

13

3 GRAPH PROCESSING

Notice that so far, the operations have been presented conceptually, being agnostic of the underlying tech-
nology. The theoretical costs are:

� Adjacency is linear in the amount of vertices to visit O (|V |).

� Reachability is O
(
|V |3

)
using Dijkstra's shortest path.

� Label-constrained reachability is O (|V |) for a single pair of vertices and O
(
|V |3

)
for all pairs. It is

NP-complete if we enforce no-repeated-edges isomorphism semantics.

� Pattern matching in general is NP-complete.

� Navigational pattern matching is also NP-complete, but can be reduced to O
(
|V |3

)
using bounded

simulation algorithms.

Exercise 3.2. Identify the most e�cient algorithm to solve a given query. Assume a graph containing rela-
tionships and nodes of actors and �lms (the same as before, but with virtually more information). De�ne:

1. A query that should be solved as an Adjacency problem.

Retrieve all pairs of (Person, F ilm) such that Person acts in Film.

2. A query that should be solved as a Label-constrained Reachability problem.

Retrieve all pairs of actors related by coacting relationship.

3. A query that should be solved as a Navigational Pattern matching problem

People and movies in which the person acts and directs.

NO! This can be done with reachability, repeating the same node:

So, we need something else... If we �x something in the middle, then we cannot use reachability. For
example, retrieve all co-actors related by the Movie Titanic:

14

3.1 Dijkstra's algorithm 3 GRAPH PROCESSING

We can also enforce other complex constraints, such as: retrieve all movies in which there are exactly 3
actors:

3.1 Dijkstra's algorithm

Dijkstra's algorithm de�nes a method to �nd the shortest path between two nodes in a graph in which the
edges have a cost assigned (it can be used in general if we take the distance between two nodes as the number
of edges used to go from one to the other).

More formally, if we have a path between two nodes, u, v, P (u, v) = {e1, ..., en}, then the distance of the
path is

d (u, v) = d (P) =

n∑
i=1

c (ei) ,

where c (ei) is the cost of going through edge ei. If we want to account only for the number of edges used, we
can then de�ne c (e) = 1 for all e ∈ E.

Dijkstra2 noticed two very convenient properties of shortest paths:

1. Every subpath of a shortest path is itself a shortest path.

This is easy to see, since if we have a shortest path between u and v, P (u, v), and we take two of the
nodes that are included in the path, say u1 and u2, then the subpath that goes from u1 to u2 must also
be of shortest length. Imagine it was otherwise, then there would be a path P ′ (u1, u2) shorter than the
subpath we found in P . Then, we could substitute this subpath by P ′, and the new path would be shorter
than P . But P is a shortest path, so this is not possible.

2. The triangle inequality of shortest paths:

d (u, v) ≤ d (u, x) + d (x, v) , ∀x ∈ E.

The algorithm is detailed in Algorithm 1. Note that this algorithm is a bit more general, since it allows to �nd
the shortest paths from one source node U to the rest of the nodes in the graph. If we want a speci�c one, we
can stop when we reach it or just �nd it from the output. To get the shortest path from U to V , we would go
to prev [V] and traverse this in reverse until getting to U .

3.2 Pattern Matching

Even considering the most basic fragment of graph patterns and for all semantics applied (homomorphism,
isomorphism, no-repeated node isomorphism or no-repeated edge isomorphism), the problem is NP-complete,
and the problem is tackled using di�erent techniques, algorithms and heuristics.

2See Dijkstra on Wikipedia.

15

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

3.3 Complex Graph Processing 3 GRAPH PROCESSING

1 for each vertex v in G.Vertices:

2 dist[v] <- INFINITY

3 prev[v] <- UNDEFINED

4 add v to Q

5 dist[U] <- 0

6

7 while Q is not empty:

8 u <- vertex in Q with min dist[u]

9 remove u from Q

10

11 for each neighbor v of u still in Q:

12 alt <- dist[u] + Graph.Edges(u, v)

13 if alt < dist[v]:

14 dist[v] <- alt

15 prev[v] <- u

16

17 return dist[], prev[]

Algorithm 1: Dijkstra(WeightedGraph G, SourceNode U)

3.3 Complex Graph Processing

3.3.1 Graph Metrics

A metric can be de�ned as a combination of adjacency, reachability, pattern matching and complex graph
patterns, so the cost of a metric depends on how it is de�ned. Nevertheless, there are very usual and relevant
metrics, which are typically provided as built-in functions. For example, the min/max degree in the graph, its
diameter, pageRank,...

3.3.2 Graph Processing Pipelines

A pipeline is a list of algorithms over a graph, which are pipelined, inputting the output of an algorithm to the
next one, to obtain some result. Therefore, we can see a metric as a pre-de�ned pipeline, but a pipeline can be
as complex as we want/need.

3.3.3 Graph Embeddings

An embedding is a vector representation of a graph, and it is useful to perform data analysis using typical ML
algorithms, that have been developed using vectors.

16

4 GRAPH DATABASES

4 Graph Databases

A graph database is a software that provides a way to store and persist graph data, as well as means to
process this data. Examples of graph databases are Neo4j or Titan.

A distributed graph framework refers to a processing framework over a graph database. We could
compare it to MapReduce3 or to Spark4, in the sense that it is a mean to extract data from a graph database,
but not to store graphs. Examples of these frameworks are Pregel or Giraph.

4.1 Implementation of Graph Databases

Graph databases can be implemented in di�erent ways, and each approach presents advantages and disadvan-
tages.

4.1.1 Incidence Lists

In incidence lists, vertices and edges are stored as records of objects, such that each vertex stores incident edges,
and each edge stores incident nodes.

Example 4.1. An Incidence List
This graph:

Can be encoded in an incidence list as follows:

The diagram is a bit messy, sorry for that.
3See MapReduce in Wikipedia.
4See Apache Spark in Wikipedia.

17

https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Apache_Spark

4.1 Implementation of Graph Databases 4 GRAPH DATABASES

Incidence Lists in Neo4j

Neo4j is implemented using incident lists, using the concept of linked lists.

Nodes

In Neo4j, there is one physical �le to store all nodes in-memory, with a Least Frequently Used cache policy, and
a �xed size for the records (of 15B). This enables for very fast look-ups in O (1) time.

Let's delve into this. This is the anatomy of a Node:

inUse nextRelId nextPropId labels extra

1B 4B 4B 5B 1B

The �rst byte is used for some metadata, such as a �ag 'inUse'.
The bytes 2-5 are the ID of the �rst relationship (edge) incident to the node.
The bytes 6-9 are the ID of the �rst property of the node.
The bytes 10-14 encode the labels of the node.
The last byte contain extra information.

Relationships and properties

There are two more kind of �les to encode relationships and properties, also containing �xed size records and
using a LFU cache policy. A relationship looks like this:

meta sNodeId dNodeId typeId sNodePrevRelId sNodeNextRelId dNodePrevRelId dNodeNextRelId nextPropId

1B 4B 4B 4B 4B 4B 4B 4B 4B

The property �le looks like this:

meta node/edgeId prevPropId nextPropId propNameId propValueId

1B 4B 4B 4B 4B 4B

In this case, the metadata �eld has a bit indicating whether the property belongs to a node or a relationship.

Example 4.2. Encode this graph using the seen nomenclature:

Nodes:

meta �rstRel �rstProp labels extra
n1 e1 p1 l1
n2 e1 p5 l2
n3 e3 p6 l2

Relationships:

meta sId dId label sNprevR sNnextR dNprevR dNnextR prop
e1 n1 n2 l3 - e2 - e2 p3
e2 n1 n2 l4 e1 - e1 e3 -
e3 n3 n2 l3 - - e2 - p8

Properties:

18

4.1 Implementation of Graph Databases 4 GRAPH DATABASES

meta n/eId prevP nextP idName idValue
p1 n n1 - p2 na1 v1
p2 n n1 p1 - na2 v2
p3 e e1 - p4 na3 v3
p4 e e1 p3 - na4 v4
p5 n n2 - - na5 v5
p6 n n3 - p7 na1 v7
p7 n n3 p6 - na2 v8
p8 e e3 - p9 na3 v6
p9 e e3 p8 - na4 v4

Names:

na1 name
na2 gender
na3 role
na4 ref
na5 title

Values:

v1 Clint Eastwood
v2 Male
v3 Bill
v4 IMDb
v5 Unforgiven
v6 Delilah
v7 Anna Levine
v8 Female

Labels:

l1 Person
l2 Movie
l3 acts_in
l4 directs

4.1.2 Adjacency Lists

For each node, we store the list of its neighbors. If the graph is directed, the list contains only the outgoing
nodes. This approach makes it cheaper for obtaining the neighbors of a node, but it is not suitable for checking
if there is an edge between two nodes, since we would need to travers the lists for both nodes completely.

Example 4.3. An Adjacency List
This graph:

Can be encoded in an adjacency list as follows:

19

4.1 Implementation of Graph Databases 4 GRAPH DATABASES

1 → 1 → 2 → 3

2 → 3

3 → 1

4.1.3 Incidence Matrix

An incidence matrix is a bidimensional graph representation, in which rows represent vertices and columns
represent edges. Then, a non-null entry represents that the source vertex is incident to the edge.

Example 4.4. An Incidence Matrix
This graph:

Can be encoded in an incidence matrix as follows:

edges
e1 e2 e3 e4 e5

nodes
1 3 1 2 1 0
2 0 0 0 2 1
3 0 2 1 0 2

Where 0='not incident', 1='source', 2='dest' and 3='source&dest'.

4.1.4 Adjacency matrix

This is also a bidimensional graph representation, in which rows represent source vertices, and columns represent
destination vertices. Therefore, each non-null entry represents that there is an edge from the source node to
the destination node.

Example 4.5. An Adjacency Matrix
This graph:

20

4.2 Types of Graph Databases 4 GRAPH DATABASES

Can be encoded in an adjacency matrix as follows:

destination
1 2 3

source
1 1 1 1
2 0 0 1
3 1 0 0

4.2 Types of Graph Databases

Some graph databases and graph processing frameworks are based on strong assumptions that are not always
explicit, but are rather a consequence of the internal implementation of graphs. We can distinguish between:

� Operational graphs: they are the graph equivalent of a CRUD database. In this kind of graph database,
nodes and edges can be deleted, updated, inserted and read. Examples are Neo4j or OrientDB.

� Analytical graphs: these are snapshot graphs that cannot be modi�ed by the �nal user, so they are the
equivalent of a data warehouse. For example, the graph processing frameworks can be seen as analytical
graphs.

21

5 DISTRIBUTED GRAPH PROCESSING

5 Distributed Graph Processing

When we have a centralized graph, the cost of the queries that we launch on it depends on the number of
edges/nodes visited during processing. Therefore, this cost is a�ected by the graph size and its topology, and
the processing algorithm used. But sometimes the graph is large and the algorithm expensive. For instance,
navigational pattern matching, in the best case, is still of cubic computational complexity.

Also, graph computations are di�cult to scale and parallelize, because:

� Computations are data-driven: this means that the computations are driven by vertices and edges, with
the structure of the computation not known a priori.

� Unstructured problems: the data stored in graphs is usually unstructured and irregular, making it di�cult
to partition.

� Poor locality: the computations and access patterns tend not to have very much locality.

� High data access to computation ratio: since exploring the structure of a graph is more usual than
performing large numbers of computations.

Sequential graph algorithms, which require random access to all the data, present poor locality and together
with the indivisibility of the graph structure cause time and resource intensive pointer chasing between storage
mediums in order to access each datum. In response to these shortcomings, new distributed frameworks based
on the vertex-centric programming model were developed. This approach is:

� No shared-memory (there is a local view of data).

� Meant to converge upon iteration.

� Naturally adapting to distributed settings.

As opposed to having a global perspective of the data (assuming all data is randomly accessible in memory),
vertex-centric frameworks employ a local, vertex oriented perspective of computation, introducing the paradigm
Think Like A Vertex (TLAV).

5.1 Distributed Graph Storage

Several open-source solutions like HDFS, HBase, or Apache Titan can be used for storage. Proprietary solutions
like Amazon Neptune also exist. Each approach has its own trade-o�s: open-source solutions o�er �exibility but
may demand additional maintenance and expertise, while proprietary solutions provide comprehensive support
but may pose usage limitations and costs.

For distributed processing frameworks to function e�ectively, graph data needs to be exposed as two views:
a set of vertices and a set of edges. Traditional distributed data management considerations, like partitioning
and replicas, apply to these views.

5.2 TLAV Frameworks

TLAV frameworks operate on a message passing interface and support iterative execution of a user-de�ned vertex
program. Vertices pass messages to adjacent vertices, and this iterative process continues until a termination
condition is met.

They might either follow the Bulk Synchronous Parallel (BSP) computing model, in which compu-
tation is based on superstep, where a superstep must �nish entirely before the next superstep starts, de�ning
a synchronization barrier per superstep; or an asynchronous computing model, which is prone to su�er
from deadlocks and data races, but may improve the performance under certain assumptions/conditions.

Examples of TLAV frameworks include Pregel, Apache Giraph, and GraphX, each o�ering its own strengths
and weaknesses. It's also important to note the role of fault-tolerance in distributed graph processing. Ensuring
system resilience to node failures is a critical aspect that helps maintain operation continuity.

Example 5.1. Calculating max using TLAV.
In the �rst superstep: all vertices send its value to its adjacent vertices.

22

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

On each superstep: each vertex compares the value that it has received (if any) to the current value that it
has. If it is greater, then it updates. In case of update, it sends again this new value to adjacent nodes.

Stop condition: no vertex changes in a superstep.
The process could be as the following:

Here, when a node is red, is because it updated, and the red arrows indicate messages. The process �nishes
when no node changes.

5.2.1 Synchronized TLAV

As we have explained, TLAV framework supports iterative execution of a user de�ned vertex program over
vertices of the graph. Programs are thus composed of several interdependent components that drive program
execution, the vertex kernels. A synchronization barrier is set between interdependent components,
de�ning the supersteps.

Therefore, a superstep is composed of di�erent kernels, and it ends when all kernels �nish, and all messages
are sent. Then, there is a synchronization barrier, which is used to synchronize the obtained results, so that the
next superstep can begin.

23

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

Example 5.2. Single-Source Shortest-Path
The following code computes the shortest path in a graph using the TLAV framework:

1 input:

2 a graph G=(V,E)

3 a starting vertex U

4

5 foreach v in V:

6 shortest_path_L[v] = inf

7

8 send(0,U)

9

10 repeat

11 for v in V do in parallel:

12 minIncoming = min(receive(path_length));

13

14 if minIncoming < shortest_path_L[v]:

15 shortest_path_L[v] = minIncoming

16

17 foreach e in E:

18 path_length = shortest_path_L[v] + length[e]

19

20 j = destination(e)

21 send(path_length ,j)

22 end

23 end

24 halt() # if no message sent , then halt

25 end

26 until no more messages are sent;

The execution could be as follows:

24

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

The colors indicate the same as in the previous example. The green node is the source node for the algorithm
and the numbers indicate the weights of the edges.

5.2.2 TLAV: Graph Distribution

We have seen that TLAV graph processing requires the graph data to be exposed in the form of two views: the
set of vertices and the set of edges. Let's see how TLAV can be achieved in a distributed environment. Let's
begin with an example:

Example 5.3. Consider the following distributed graph:

This graph can be represented as follows:

25

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

Here, we have depicted the two views, partitioned. Each partition is depicted by a yellow rectangle. And
the instances are stored in the partitions. Note that the vertices do not store the nodes, I have draw them like
that to facilitate readability.

Now, we want to set up a simple TLAV environment. We are going to send messages {am, bm, cm, fm}. Each
message is sent to the node it is named after. For example, am goes to node a. The nodes will send the message
to all nodes to which they are connected, and these will generate a message named after them. For example, if
b receive a message, it will send bm. The �rst superstep of this process is:

Note how messages can be merged in two ways: intrapartition and interpartition. The messages in the white
box would be sent to the vertices for the next superstep.

It is very important to realize that states can only be shared through messages, since there is no shared
memory.

About the vertex kernel, keep in mind the after its execution, the vertices send messages to adjacent vertices,
and these messages could be as complex as needed, and they can even modify the graph. The kernel must also
include a halt condition, so that a node knows when to stop sending messages, and convergence can be
achieved.

Pregel

Pregel is a very famous TLAV framework. Its model of computation is as follows:

� Input: a directed graph with three views:

26

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

� List of nodes, uniquely identi�ed.

� List of edges.

� Triplet views: an edge and its nodes information, showing all the information for the edge.

� Processing: in each superstep the vertices work in parallel.

� They can modify their state, the state of their outgoing edges, receive messages from the previous
superstep, send messages to other vertices for the next superstep and modify the graph topology.

� The algorithm �nishes based on a voting to halt. This means that when a node halts, it becomes
inactive and stop sending processing and sending messages, until it receives another messages. When
all nodes are inactive, the process �nishes.

� Output: the set of values explicitly outputed by the vertices.

GraphX

GraphX is a subproject of Apache Spark, built as a Spark module and following Pregel's principles, but it only
allows to send messahes to adjacent vertices.

It uses Spark GraphFrames to provide Pregel's required views (vertices, edges and triplets) and provides a
library with typical distributed algorithms, such as pageRank, connected componentes, triangle count,...

5.2.3 Deepening into TLAV

Scheduling

Scheduling refers to how user-de�ned vertex programmes are scheduled for execution. They can be Synchronous,
Asynchronous, Both or Hybrid.

Synchronous scheduling is based on the Bulk Synchronous Parallel (BSP) processing model. Active
vertices are executed conceptually in parallel over one or more iterations, called supersteps and synchronization
is achieved through a global synchronization barrier situated between each superstep that block vertices from
computing the next superstep until all workers complete the current one. Each worker has to coordinate with
the master to progress to the next superstep.

Synchronization is achieved because the barrier ensures that each vertex within a superstep has access to
only the data from the previous superstep. Note that inside a superstep, vertices can be scheduled in a �xed or
random order, because the execution order does not a�ect the state of the program (it should not, at least).

Pros os synchronous scheduling:

� Conceptually simple.

� Good for certain algorithms.

� Almost always deterministic, making synchronous applications easy to design, program, test, debug and
deploy.

� Scalable: potentially linear in the number of vertices and can bene�t from batch messaging between
supersteps.

Cons:

� System throughput must remain high in each sueprstep ot justify the synchronization cost. Throughput
is a�ected by the drop of active vertices or by the imbalance workload among workers, resulting in the
system becoming underutilized; the iterative nature of graph algorithms, which su�er from 'the curse of
the last reducer' (straggler problem), where many computations �nish quickly but a small fraction of
computations take a desproportionately larger amount of time; and the speed of computation of each
node.

� The algorithm may not converge for some graph topologies. In general, algorithms that require some type
of neighbor coordination may not always converge with the synchronous scheduling model without the
use of some extra logic in the vertex program.

27

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

Asynchronous scheduling is di�erent. There is no explicit synchronization points, so any active vertex is
eligible for computation whenever processor and network resources are available. The vertex execution order
can be dynamically generated and reorganized by the scheduler, and the straggler problem is eliminated. As a
result, many asynchronous models outperform corresponding synchronous models, but at the expense of added
complexity.

Pros:

� Outperform synchronous systems when the workload is imbalanced.

Cons:

� It cannot take advantage of batch messaging optimizations.

� The typical pull model execution may result in unnecessary processing.

� Asynchronous algorithms face more di�cult scheduling problems and also consistency issues.

In general, synchronous execution generally accommodates IO bound algorithms, while asynchronous execution
well-serves CPU bound algorithms by adapting to large and variable workloads.

Message Passing

Information is sent from one vertex program kernel to another via messages, which contain local vertex data
and is addressed to the ID of the recipient vertex. A message can be addressed anywhere, but since vertices do
not have ID information of all the other vertices, destination vertex IDs are typically obtained by iterating over
outgoing edges.

After computation is complete and a destination ID for each message is determined, the vertex dispatches
messages to the local worker process, which determines whether the recipient resides on the local machine or a
remote one.

� If it is in the local machine, the worker process the message directly into the vertex's incoming messages
queue.

� Otherwise, the worker process looks up the worker ID of the destination vertex and places the message in
an outgoing message bu�er, which are �ushed when they reach a certain capacity, sending messages over
the network in batches. In principle, it tries to wait until the end of a superstep to send all messages in
batch-mode.

There three main strategies to optimize message passing:

1. Sender-side combiner: messages from several nodes are merged in the sender worker, which sends them
to the destination worker.

2. Receiver-side combiner: in this case, the sender worker sends all the messages produced by all nodes
to the destination worker, which makes the merging.

3. Receiver-side scatter: the sender worker send a message, which is received by the destination worker,
sending it to several nodes.

Shared Memory

Shared memory exposes vertex data as shared variables that can be directly read or modigied by other vertex
programs, avoiding the additional memory overhead constituted by messages. This is typical of centralized
graph processing, but there are also some distributed systems that apply it.

The main problem is that for shared-memory TLAV frameworks, race conditions may arise when an
adjacent vertex resides on a remote mahcine. Shared-memory TLAV frameworks often ensure memory consis-
tency through mutual exclusion by requiring serializable schedules. Serializability means that every parallel
execution has a corresponding sequential execution that maintains consistency.

The most prominent solutions up to today are:

� In GraphLab, border vertices are provided locally cached ghost copies of remote neighbors, where consis-
tency between ghosts and the original vertex is maintained using pipelined distributed locking.

28

5.2 TLAV Frameworks 5 DISTRIBUTED GRAPH PROCESSING

� In PowerGraph and GiraphX, graphs are partitioned by edges and cut along vertices, where consistency
across cached mirrors of the cut vertex is maintained using parallel Chandy-Misra locking.

The reduced overhead of shared memory compared to message passing may lead to 35% faster converges when
computing PageRank on a large web graph.

Partitioning

Large-scake graphs must be divided into parts to be placed in distributed storage/memory. Good partitions
often lead to improved performance, but expensive strategies to partition can end up dominating processing
time, leading many implementations to incorporate simple strategies, such as random placement.

E�ective partitioning evenly distributes the vertices for balanced workload while minimizing imterpartition
edges to avoid costly network tra�c. This is formally known as a k-way graph partitioning, which is a NP-
complete problem, with no �xed-factor approximation.

The leading work in graph partitioning can be broadly characterized as rigorous but impractical mathemat-
ical strategies or pragmatic heuristics used in practices, but this is currently an open problem.

29

6 INTRODUCTION TO KNOWLEDGE GRAPHS

Figure 1: Example knowledge graph from [1].

Figure 2: Examples of data linkage from [1].

Part II

Knowledge Graphs

6 Introduction to Knowledge Graphs

In a knowledge graph, every node is represented with a unique identi�es and can be universally re�ered, i.e.,
they can be referred potentially from any other database in the world.

Metadata is represented as nodes and edges in the graph.
Knowledge graphs facilitate linking data, because linking via their metadata is much more powerful than

by the characteristics of the instances, and it is a unique feature of their own. In Figure 2, we can see several
relationships between metadata nodes:

� A subClassOf B indicates that concept A is a subset (more speci�c) of concept B.

� A equivalentClass B indicates that classes A and B represent the same information, even if they are stored
in di�erent machines.

� A equivalent B also indicate equivalence of representation, but in this case it refers to subgraphs of the
metadata.

Example 6.1. Assume Knowledge Graph as the canonical data model. First, model as graphs each source
(separately):

30

6 INTRODUCTION TO KNOWLEDGE GRAPHS

1. Model schema and some instances for each source:

Source 1

User
Tweet
Date

Location

Source 2

Product
Product Features

Source 3

User
Product
Time

2. Then, relate the metadata from each graph with new edges generating a unique connected graph. For
this:

(a) Look for similar or identical concepts.

(b) Think of interesting relationships you could exploit later.

Assume you can use the following pre-de�ned edges: equivalentClass, type and subClassOf, which embed the
semantics already discussed.

A possible solution is the following:

Note that to model the ternary relationship between (User, Product, Time) we needed to add an arti�cial
node. This is called rei�cation.

31

7 RESOURCE DESCRIPTION FORMAT (RDF)

Schema.org

Schema.org is a global initiative to mark up data. It provides a vocabulary of terms and their relationships.
Google and others ahve built their semantic-aware searchers based on schema.org and built huge knowledge
graphs based on it.

7 Resource Description Format (RDF)

RDF is a simple language for describing annotations (facts) about resources. It is the most basic ontology
language. The triples that it uses as basic construct map to �rst order logic as grounded atomic formulas, and
blank nodes map to existential variables.

The basic RDF block is the RDF statement which is a triple representing a binary relationship between
two resources or between a resource and a literal. The syntax is:

<subject predicate object>

where:

� subject S has value object O for predicate P.

� subject and predicate are resources and must be URIs.

� object can be a resource (URI) or a literal (constant value).

As can be inferred from this, resources are identi�ed by URIs, which are global identi�ers. A URI is composed
of a URL and a URN:

� URN is the Universal Resource Name: id

� URL is the Universal Resource Location: where it is

Many times, we omit the URL for simplicity, and refer to the URI as :URN.
A blank node is a resource without a URL (i.e., _).
Literals are atomic values such as strings, dates or numbers.
We can thus de�ne a RDF graph (or semantic graph) as a set of these RDS statements.
To query RDF graph, SPARQL is the de facto language (also for it variants and extensiosn). It is inspired

by SQL but oriented to express graph operations.

Example 7.1. A RDF graph example.
The graph:

Can be represented as an RDF like this:

1 (: Dupond :Leads :CSDept)

2 (: Dupond :TeachedIn :UE111)

3 (: Dupond :TeachesTo :Pierre)

4 (: Pierre :EnrolledIn :CSDept)

5 (: Pierre :RegisteredTo :UE111)

6 (:UE111 :OfferedBy :CSDept)

32

7.1 RDF Modeling 8 RDF SCHEMA (RDFS)

Usually, RDF is serialized using the XML format.
The rdf URL is a namespace for RDF.
Other RDF syntaxes are turtle (which is human-readbale), N-triples or Notation 3.

7.1 RDF Modeling

RDF modeling is based on binary relationships, but n-ary relationships may be needed, so blank nodes were
presented as a solution for this. A blank node is a node without a URI, which cannot be referenced and can
only be subjects or objects. Its semantics are not completely clear yet, but their de facto use is as an identi�er
without a URI. The W3C position is this regard is to use blank nodes for incomplete data: unknown values or
anonymized values. The de facto use is pragmatic, but good practices discourage their use: all resources should
have a proper URI.

Example 7.2. Quoting
The following use of a blank node:

Can be expressed as:
:oscar :takes [:course :SDM]
This is quoting, which is general is [property object], and the subject is the blank node.

Notice that we cannot express neither schema nor additional constraints, such as 'at least one' or 'at most
three'.

7.2 RDF-star

RDF-star in as RDF extension, more comapct and with a predice syntax for rei�cation.

Example 7.3. The following is RDF-star:

1 @prefix: <http ://www.example.org/>

2

3 :employee38 :familyName "Smith"

4 :employee22 :claims << :employee38 :jobTitle "Assistant Designer" >>

Here, we have what is called an embedded triple, and it models the 3-way relationship between (:emp22,
:emp38, �Assistant Designer�).

SPARQL-star is an extension of SPARQL to query RDF-star graphs.

8 RDF Schema (RDFS)

RDFS extends RDF to not only consider data instances, but also schema. In this case, we can de�ne classes
and relationships between them, using the same principles as for instances. It de�nes rdfs:, a namespace for
RDFS, in which a set of resources needed to express contraints is de�ned.

RDFS allows to specify the following constraints:

� Declare resources as instances of certain classes.

� :Oscar :type :lecturer

33

8.1 RDFS statements at the schema level 8 RDF SCHEMA (RDFS)

� Inclusion statements between classes and between properties, which allow us to de�ne taxonomies.

� :lecturer :subclassOf :human

� Assert the class of a subject (or an object) of a property

� The predicate :parentOf must relate instnaces of the class :human. Therefore, any subject/object of
a triple where :parentOf is the predicate is atumatically asserted as :human.

8.1 RDFS statements at the schema level

� Instances:

� :Oscar rdf:type :Lecturer

� Taxonomies:

� Classes: :Lecturer rdfs:subclassOf :Human

� Relationships: :ResponsibleFor rdfs:subpropertyOf :Lecutres

� Domain and Range:

� :Lectures rdfs:domain :Human

� :Lectures rdfs:range :Course

8.2 RDFS Core Classes

� rdfs:Resource: the class of all resources. Everything is a resource.

� rdfs:Class: the class of all classes.

� rdfs:Literal: the class of all literals.

� rdf:Property: the class of all properties.

� rdf:Statement: the class of all statements.

These core classes add another level of abstraction above the metadata layer.

8.3 RDFS Inference

In RDFS we can infer new instances (knowledge) from the statements created by the users. It is based on
rule-based reasoning and there are two kinds of inference:

� Core type inference: it infers the type with regards to the core classes of an asserted resource R.

� Domain-speci�c inference: it can be:

� Inclusion dependencies:

* If :A rdfs:subclassOf :B and :B rdfs:subclassOf :C then :A rdfs:subclassOf :C.

� Type inference: it infers the type of an asserted resource R with respect to a user created class X.

34

8.4 RDFS Core Properties 8 RDF SCHEMA (RDFS)

Figure 3: Three layers of abtraction of RDFS from [1]. The red arrows are rdf:type relationships.

8.4 RDFS Core Properties

� rdf:type: relates a resource to its class:

:oscar rdf:type :lecturer

The subject resource (:oscar) is declared to be an instance of the object class (:lecturer).

� The inferred knowledge is:

* Core type inference: the object is inferred as a Class:

:lecturer rdf:type rdfs:Class

� rdfs:subClassOf : relates a class to one of its superclasses:

:lecturer rdfs:subClassOf :human

:oscar rdf:type :lecturer

The subject and object are declared as classes and any instance of the subject is declared as an instance
of the object.

� The inferred knowledge is:

* Core type inference: the subject and object are inferred as classes:

:lecturer rdf:type rdfs:Class

:human rdf:type rdfs:Class

* Domain speci�c inference: inclusion dependency:

:oscar rdf:type :human

35

8.4 RDFS Core Properties 8 RDF SCHEMA (RDFS)

� rdfs:subPropertyOf : relates a property to one of its superproperties:

:responsibleFor rdfs:subPropertyOf :lectures

:oscar :responsibleFor :OD

The subject and object resources are declared to be properties and any subject, object related by subject
predicate are automatically declared as to be related by the object predicate.

� The inferred knowledge is:

* Core type inference: the subject and object are inferred as properties:
:responsibleFor rdf:type rdf:Property

:lectures rdf:type rdf:Property

* Domain speci�c inference: inclusion dependency:
:oscar :lectures :OD

� rdfs:domain: speci�es the domain of a property:

:lectures rdf:domain :lecturer

:oscar :lectures :OD

� The inferred knowledge is:

* Core type inference: the subject is declared to be a property and the object is declared to be a
class:

:lectures rdf:type rdf:Property

:lecturer rdf:type rdfs:Class

* Domain speci�c inference: type inference:
:oscar rdf:type :lecturer

� rdfs:range: speci�es the range of a property:

:lectures rdf:range :course

:oscar :lectures :OD

� The inferred knowledge is:

* Core type inference: the subject is declared to be a proeprty and the object is declared to be a
class:

:lectures rdf:type rdf:Property

:course rdf:type rdfs:Class

* Domain speci�c inference: type inference:
:OD rdf:type :course

Example 8.1. An RDFS graph.
Consider the graph that we have used many times already:

36

8.5 SPARQL 8 RDF SCHEMA (RDFS)

Create a correct RDFS graph capturing as much constraints as possible from it. What triples may you infer
from the asserted RDFS graph?

The RDFS graph can be the following:

And the instantiation of the data:

Instantiation Inference

:clintEastwood :hasRole :bill :clintEastwood rdf:type Actor
:bill rdf:type :role

:clintEastwood rdf:type Person
:bill :inMovie :Unforgiven :bill rdf:type :role

:Unforgiven rdf:type :Movie
:Ungorgiven :title 'Unforgiven' :Unforgiven rdf:type :Movie

:clintEastwood :name 'Clint Eastwood' :clintEastwood rdf:type :Person
:clintEastwood :gender :male :clintEastwood rdf:type :Person

:male rdf:type :genderClass
:bill :roleName 'Bill' :bill rdf:type :role
:bill :red 'IMDB' :bill rdf:type :role

:annaLevine :hasRole :delilah :annaLevine rdf:type :Actor
:delilah rdf:type :role

:annaLevine rdf:type :Person
:delilah :inMovie :Unforgiven :delilah rdf:type :role

:Unforgiven rdf:type :Movie
:annaLevine :name 'Anna Levine' :annaLevine rdf:type :Person

:annaLevine :gender :female :annaLevine rdf:type :Person
:female rdf:type :genderClass

:delilah :roleName 'Delilah' :delilah rdf:type :role
:delilah :ref 'IMDB' :delilah rdf:type :role

:clintEastwood :directs :Unforgiven :clintEastwood rdf:type :Director
:Unforgiven rdf:type :Movie

:clintEastwood rdf:type Person

8.5 SPARQL

SPARQL Protocol And RDF Query Language (SPARQL) is the standard query language for RDF(S) graphs,
being also a W3C recommendation and supporting RDFS and OWL under speci�c entailments.

37

8.5 SPARQL 8 RDF SCHEMA (RDFS)

SPARQL is based on navigational pattern matching, and simple RDF graphs are used as query patterns.
The semantics applied are homomorphism semantics.

Example 8.2. A simple query:

1 SELECT x, z

2 WHERE

3 x Lectures y,

4 y TaughtIn z,

5 z rdf:type Faculty

SPARQL has 4 basic forms that retrive either result sets or RDF graphs:

� SELECT: returns all, or a subset of, the variables bound in a query pattern match.

� CONSTRUCT: returns an RDF graph constructed by substituting variables in a set of triple templates.

� ASK: returns a boolean indicating whether a query pattern is matched or not.

� DESCRIBE: returns an RDF graph that describes the resources found.

A SPARQL Endpoint is an endpoint accepting SPARQL queries and returning the results via HTTP.

Example 8.3. A more complete example:

1 PREFIX fib: <http :// www.fib.edu/elements/>

2 SELECT ?lecturer ?course

3 WHERE

4 {

5 ?lecturer fib:lectures ?course

6 }

This query is equivalent to: SELECT x,y WHERE x LECTURES y.

SPARQL allows property paths based on regular expressions.

Example 8.4. Take into account the following graph:

And write the following queries, assuming no entailment regime:

1. Get the name of all actors that participated in Juno:

1 PREFIX mov: <url >

2 SELECT ?name

3 WHERE

4 {

5 mov:juno mov:stars ?actor.

6 ?actor mov:name ?name

7 }

38

8.6 RDFS Inference Rules 8 RDF SCHEMA (RDFS)

2. Get the name of all directors:

1 PREFIX mov <url >

2 SELECT ?name

3 WHERE

4 {

5 ?dir rdf:type :Director.

6 ?dir mov:name ?name

7 }

8 UNION

9 SELECT ?name

10 WHERE

11 {

12 ?dir mov:directs ?mov.

13 ?dir mov:name ?name

14 }

3. Get the name of all persons:

1 PREFIX mov: <url >

2 SELECT ?name

3 WHERE

4 {

5 ?person mov:name ?name

6 }

4. Get the title of all movies:

1 PREFIX mov: <url >

2 SELECT ?title

3 WHERE

4 {

5 ?movie mov:title ?title.

6 ?movie rdf:type ?movie

7 }

8.5.1 Entailment Regimes

The most basic entailment regime supported by SPARQL is simple entailment, in which graph patterns are
evaluated by means of pattern matching under homomorphism semantics.

Nonetheless, more elaborate entailment relations have been developed, to retrieve solutions that are logical
consequences of the axioms asserted. The most popular ones are RDFS entailment and OWL 2 RDF-Based
Semantics entailment.

8.6 RDFS Inference Rules

The RDFS entailment rules are presented in the following table:

39

8.6 RDFS Inference Rules 8 RDF SCHEMA (RDFS)

If S contains Then S RDFS entails recognizing D:

rdfs1 any IRI a in D a rdf:type rdfs:Datatype
rdfs2 a rdfs:domain x.

y a z.
y rdf:type x

rdfs3 a rdfs:range x.
y a z

z rdf:type x

rdfs4a x a y x rdf:type rdfs:Resource
rdfs4b x a y y rdf:type rdfs:Resource
rdfs5 x rdfs:subPropertyOf y.

y rdfs:subPropertyOf z
x rdfs:subPropertyOf z

rdfs6 x rdf:type rdf:Property x rdfs:subPropertyOf x
rdfs7 a rdfs:subPropertyOf b.

x a y
x b y

rdfs8 x rdf:type rdfs:Class x rdfs:subClassOf rdfs:Resource
rdfs9 x rdfs:subClassOf y.

z rdf:type x
z rdf:type y

rdfs10 x rdf:type rdfs:Class x rdfs:subClassOf x
rdfs11 x rdfs:subClassOf y.

y rdfs:subClassOf z
x rdfs:subClassOf z

rdfs12 x rdf:type rdfs:ContainerMembershipProperty x rdfs:subPropertyOf rdfs:Member
rdfs13 x rdf:type rdfs:Datatype x rdfs:subClassOf rdfs:Literal

8.6.1 The RDFS Paradox

The Russel's Paradox is a theoretical paradox that arises within a naïve set theory, by considering the set of
all sets that are not members of themselves. This paradox arises in RDFS. This means that the RDFS regime
entailment is �awed, and the reason is that the RDFS core classes and properties are ill-de�ned. The problems
are:

� rdfs:Class is an instance of itself. This allows the possibility of having ini�nitely many layers of classes.

� rdfs:Resource is a superclass and an instance of rdfs:Class at the same time.

� rdfs:subClassOf, rdf:type, rdfs:Range and rdfs:Domain are both used to de�ne the other RDFS primitives
and the user metadata.

The SPARQL community rethought the RDFS metamodel to introduce �x-point reasoning, disallowing for
in�nite inference loops, and having elements organized in a strict order, i.e., an element cannot be an element
and a set at the same time, and no element can be placed twice in a taxonomy at di�erent levels. This gave
birth to the modi�ed RDFS Entailment Regime:

40

9 ONTOLOGY LANGUAGES: DESCRIPTION LOGICS

If S contains Then S RDFS entails recognizing D:

rdfs1 any IRI a in D a rdf:type rdfs:Datatype
rdfs2 a rdfs:domain x.

y a z.
y rdf:type x

rdfs3 a rdfs:range x.
y a z

z rdf:type x

rdfs4a x a y x rdf:type rdfs:Resource
rdfs4b x a y y rdf:type rdfs:Resource
rdfs5 x rdfs:subPropertyOf y.

y rdfs:subPropertyOf z
x rdfs:subPropertyOf z

///////rdfs6 //x//////////rdf:type/////////////////rdf:Property //x////////////////////////rdfs:subPropertyOf///x
rdfs7 a rdfs:subPropertyOf b.

x a y
x b y

///////rdfs8 /x///////////rdf:type/////////////rdfs:Class /x/////////////////////rdfs:subClassOf/////////////////rdfs:Resource
rdfs9 x rdfs:subClassOf y.

z rdf:type x
z rdf:type y

///////rdfs10 /x///////////rdf:type/////////////rdfs:Class //x////////////////////rdfs:subClassOf///x
rdfs11 x rdfs:subClassOf y.

y rdfs:subClassOf z
x rdfs:subClassOf z

///////rdfs12 /x///////////rdf:type///rdfs:ContainerMembershipProperty /x/////////////////////////rdfs:subPropertyOf/////////////////rdfs:Member
rdfs13 x rdf:type rdfs:Datatype x rdfs:subClassOf rdfs:Literal

9 Ontology Languages: Description Logics

De�nition 9.1. A ontology is a formal description of a domain in terms of the concepts and roles
or properties between them. More precisely, it is a controlled vocabulary or schema, usually called the
TBOX, with aligned instances, or ABOX.
The TBOX and ABOX assertions are described with formal semantics and, based on its formal semantics,
it de�nes inference rules, based on some kind of reasoning.

Note that RDF graphs are not ontologies and that RDFS are ontologies only if we take care of making them
to be, by following the good practices. OWL graphs (we will see them later) are forced to be ontologies.

9.1 Logic Based Ontology Languages

First Order Logic (FOL) is suitable for knowledge representation, since classes can be represented as unary
predicates, properties/relationship as binary predicates and constraints as logical formulas using the predicates.

Nonetheless, we must take into consideration of undecidability problem: there is no algorithm that determines
if a FOL formula implies another. Therefore, we have to work with decidable fragments of FOL:

� Description logics: binary predicates with bounded number of variables.

� Datalog: Horn-clauses.

The characteristics of these are summarized in the following table:

Datalog Description Logics

Focus Instances Knowledge
Approach Centralized Decentralized
Reasoning Closed-World Assumption Open-World Assumption

Unique name Unique name assumption Non-unique name assumption

The open-world assumption implies that everything can be true, unless the opposite is explicitly indicated.

41

9.2 TBOX 9 ONTOLOGY LANGUAGES: DESCRIPTION LOGICS

9.2 TBOX

A TBOX is characterized by a set of constructs for building complex concepts and roles from atomic ones.

� Concepts correspond to classes.

� Roles correspond to relationships.

Then, the TBOX de�nes the terminology of the domain, with formal semantics given in terms of interpretations:

De�nition 9.2. An interpretation I =
(
∆I , ·I

)
consists of a nonempty set ∆I , the domain of I,

and an interpretation function ·I , which maps:

� Each individual, i.e., each element in the real world that we want to represent, a to an element
aI ∈ ∆I .

� Each atomic concept A to a subset AI ⊂ ∆I .

� Each atomic role P to a subset P I ⊂ ∆I ×∆I .

With these basic pieces, we can construct more complex concepts:

Construct Syntax Semantics Example

atomic concept A AI ⊂ ∆I Doctor
atomic role P P I ⊂ ∆I ×∆I hasChild

atomic negation ¬A ∆I \AI ¬Doctor
conjunction C ⊓D CI ∩DI Human⊓Male

unquali�ed existence restriction ∃R
{
a|∃b : (a, b) ∈ RI} ∃hasChild

value restriction ∀R.C
{
a|∀b, (a, b) ∈ RI =⇒ b ∈ CI} ∀hasChild.Male

bottom ⊥ ∅

In this table, C and D denote arbitrary concepts, i.e., a combination of atomic concepts through appropriate
constructs, and R an arbitrary role, i.e., a combination of atomic roles through appropriate constructs.

The combination of these constructrs form the basic language AL of the family of AL languages. However,
this can be extended, adding new constructs:

Construct AL· Syntax Semantics Example

disjunction U C ⊔D CI ∪DI (Human ⊓Doctor) ⊔ (Human ⊓ (¬Patient))
top ⊺ ∆I

quali�ed existence restriction E ∃R.C
{
a|∃b : (a, b) ∈ RI ∧ b ∈ CI} ∃Treats.Doctor

full negation C ¬C ∆I \ CI ¬ (∃Treats.Doctor)

number restrictions N (≥ k R)
{
a|#

{
b : (a, b) ∈ RI} ≥ k

}
≥ 5 Treats

(≤ k R)
{
a|#

{
b : (a, b) ∈ RI} ≤ k

}
≤ 5 Treats

quali�ed number restriction Q (≥ k R.C)
{
a|#

{
b : (a, b) ∈ RI ∧ b ∈ CI} ≥ k

}
≥ 5 Treats.(Doctor ⊓Male)

(≤ k R.C)
{
a|#

{
b : (a, b) ∈ RI ∧ b ∈ CI} ≤ k

}
≤ 5 Treats.(Doctor ⊓ Female)

inverse role I R− {
(b, a) | (a, b) ∈ RI} Treats−

role closure reg R∗ (
RI)∗ (Treats)

∗

Example 9.1. What is the meaning of these axioms:

� Disjunction:
∀hasChild. (Doctor ⊔ Lawyer)

Formally: {
a|∀b : (a, b) ∈ hasChildI =⇒ b ∈ DoctorI ∨ b ∈ LawyerI

}
Natural language: all entities such that all their childs are a doctor or a lawyer.

42

9.2 TBOX 9 ONTOLOGY LANGUAGES: DESCRIPTION LOGICS

� Quali�ed existencial restriction:
∃hasChild.Doctor

Formally: {
a|∃b : (a, b) ∈ hasChildI ∧ b ∈ DoctorI

}
Natural language: all entities that has a child who is a doctor.

� Full negation:
¬ (Doctor ⊔ Lawyer)

Formally:
∆I \

(
DoctorI ∪ LawyerI

)
Natural language: all entities that not a doctor nor a lawyer.

� Number restrictions:
(≥ 2 hasChild) ⊓ (≤ 1 sibling)

Formally: {
a|#

{
b : (a, b) ∈ hasChildI

}
≥ 2 ∧#

{
c : (a, c) ∈ siblingsI

}
≤ 1

}
Natural language: all entities that have at least two childs and at most one sibling.

� Quali�ed number restrictions:
(≥ 2 hasChild.Doctor)

Formally: {
a|#

{
b : (a, b) ∈ hasChildI ∧ b ∈ DoctorI

}
≥ 2

}
Natural language: all entities that have at least two childs that are doctors.

� Inverse role:
∀hasChild−.Doctor

Formally: {
a|∀b : (b, a) ∈ hasChildI =⇒ b ∈ DoctorI

}
Natural language: all entities that are childs of doctors.

� Re�exive-transitive role closure:
∃hasChild.Doctor

Formally: {
a|∃b : (a, b) ∈

(
hasChildI

)∗ ∧ b ∈ DoctorI
}

Natural language: all entities that are ascendent of some doctor.

A Description Logics TBOX only includes terminological axioms of the following form:

1. Inclusion:

(a) C1 ⊑ C2 is satis�ed by I if CI
1 ⊆ CI

2 .

(b) R1 ⊑ R2 is satis�ed by I if RI
1 ⊆ RI

2 .

2. Equivalence:

(a) C1 ⊑ C2, C2 ⊑ C1.

43

9.3 ABOX 9 ONTOLOGY LANGUAGES: DESCRIPTION LOGICS

Example 9.2. A TBOX example
The following axioms de�ne a TBOX:

Woman ≡Person ⊓ Female

Man ≡Person ⊓ ¬Woman

Mother ≡Woman ⊓ ∃hasChild.Person

Father ≡Man ⊓ ∃hasChild.Person

Parent ≡Father ⊔Mother

Grandmother ≡Mother ⊓ ∃hasChild.Parent

MotherWithManyChildren ≡Mother⊓ ≥ 3 hasChild

MotherWithoutDaughter ≡Mother ⊓ ∀hasChild.¬Woman

Wife ≡Woman ⊓ ∃hasHusband.Man

9.3 ABOX

The ABOX de�nes the instances in terms of the terminological axioms de�ned in the TBOX, by using concept
(Student (Pere)) and role (Teaches (Oscar, Pere)) assertions.

Example 9.3. A knowledge base (TBOX+ABOX)
The TBOX assertions are the following:

� Inclusion assertions on concepts:

Father ≡Human ⊓Male ⊓ ∃hasChild

HappyFather ⊑Father ⊓ ∀hasChild. (Doctor ⊔ Lawyer ⊔HappyPerson)

HappyAnc ⊑∀descendant.HappyFather

Teacher ⊑¬Doctor ⊓ ¬Lawyer

� Inclusion assertions on roles:

hasChild ⊑descendant

hasFather ⊑hasChild−

The ABOX membership assertions are:
Teacher (mary)

hasFather (mary, john)

HappyAnc (john)

Example 9.4. The following UML diagram

44

9.4 Models of a Description Logics Ontology 9 ONTOLOGY LANGUAGES: DESCRIPTION LOGICS

can be represented as the TBOX:

∃hasFather ⊑Person

∃hasFather− ⊑Person

Person ⊑∃hasFather

9.4 Models of a Description Logics Ontology

De�nition 9.3. A model of a knowledge base O = ⟨T ,A⟩ is an interpretation I that satis�es all
assertions in T and all assertions in A.
If there is a model for O, then it is satis�able.
O logically implies an assertion α, written O |= α if α is satis�ed by all models of O.

Satis�ability looks for contrasictions in the asserted axioms. Without negations, everything is satis�able,
and TBOX axioms are just used to infer knowledge for the asserted elements. This is the case of RDFS, and in
case of an error, the knowledge base will simply infer wrong knowledge, but no error nor alert will be rased.

Including negation, we can identify mistakes in the ABOX, since such interpretations will not be a model
for that ontology.

Example 9.5. Is the following interpretation a model? Can you think of an interpretation that is a model?
The TBOX is:

∃Teaches ⊑Teacher

∃Teaches− ⊑Course

Teacher ⊑¬Course

And the ABOX is:
Teaches (x, x) .

It is not a model, because

Teaches (x, x)
∃Teaches⊑Teacher

|= Teacher (x)
Teacher⊑¬Course

|= ¬Course (x)

and

Teaches (x)
∃Teaches−⊑Course

|= Course (x) ,

and both expressions cannot evaluate to true at the same time.
To make a model, we can change the ABOX to be

Teaches (x, y) ,

in which case all assertions from the TBOX and the ABOX can be satis�ed.

Example 9.6. Description Logics Reasoning
Consider the following TBOX and make all possible inferences:

Researcher ⊑¬Professor

Researcher ⊑¬Lecturer
∃TeachesTo− ⊑Student

Student ⊓ ¬Undergrad ⊑GraduateStudent

∃TeachesTo.Undergrad ⊑Professor ⊔ Lecturer

The TBOX inferences are:

Researcher ⊑∃TeachesTo.GraduateStudent

45

9.4 Models of a Description Logics Ontology 9 ONTOLOGY LANGUAGES: DESCRIPTION LOGICS

Do the same with this ABOX:

TeachesTo (dupond, pierre)

¬GraduateStudent (pierre)

¬Professor (dupond)

The ontology inferences are:

Undergrad (pierre)

Lecturer (dupond)

9.4.1 TBOX Reasoning

� Concept Satis�ability: a concept C is satis�able with respect to the TBOX T if there is a model I of
T such that CI is not empty, i.e., T��|=C ≡⊥.

� Subsumption: a concept C1 is subsumed by another concept C2 with respect to the TBOX T if, for
every model I of T , we have CI

1 ⊆ CI
2 , i.e., T |= C1 ⊑ C2.

� Equivalence: C1 and C2 are equivalent with respect to T if, for every model I of T we have CI
1 = CI

2 ,
i.e., T |= C1 ≡ C2.

� Disjointness: C1 and C2 are disjoint with respect to T if, for every model I of T , we have CI
1 ∩CI

2 = ∅,
i.e., T |= C1 ⊓ C2 ≡⊥.

� Functionality implication: a functionality assertion, (funct R), is logically implied by T if, for every
model I of T ,we have that (o, o1) ∈ RI and (o, o2) ∈ RI implies o1 = o2, i.e., T |= (funct R).

9.4.2 Reasoning complexity

In the next table, the complexity for concept satis�ability for each of the logic families we have seen is shown:

Family Complexity

AL,ALN PTIME
ALU ,ALUN NP-complete

ALE coNP-complete
ALC,ALCN ,ALCI,ALCQI PSPACE-complete

It can be observed that there are two sources of complexity:

� The union (U) is of type NP.

� The existential quanti�cation (E) is of type coNP.

When they are combined, the complexity jumps to PSPACE.
Note that number restrictions (N) do not add complexity.

9.4.3 Ontology Reasoning

The problem of ontology satis�ability consists of verifying whether an ontology is satis�able or not, i.e.,
whether the ontology O admits at least one model.

The problem of concept instance checking consists of verifying whether an individual c is an instance of
a concept C in O, i.e., whether O |= C (c) or not.

The problem of role instance checking consists of verifying whther a pair (c1, c2) of individuals is an
instance of a role R in O, i.e., whether O |= R (c1, c2) or not.

The problem of query answering consists of �nding the certain answers:

De�nition 9.4. The certain answers to query q (x) over O = ⟨T ,A⟩, denoted cert (q,O) are the
tuples c of constants of A such that c ∈ qI , for every model I of O.

We need to bear in mind the open-world assumption: something evaluates to false only if it contradicts
other information in the ontology.

46

10 ONTOLOGY WEB LANGUAGE (OWL)

Example 9.7. Open-world assumption illustrative example.
Consider the following ABOX:

hasSon (Iokaste,Oedipus)

hasSon (Iokaste, Polyneikes)

hasSon (Oedipus, Polyneikes)

hasSon (Polyneikes, Thersandros)

patricide (Oedipus)

¬patricide (Thersandros)

This is visually shown as:

Consider the query:
Query ≡ ∃hasSon. (patricide ⊓ ∃hasSon.¬patricide)

Does
ABOX |= Query (Iokaste)?

Yes!
Since there is no information of whether patricide (Polyneikes) is true or not, we need to evaluate all

possibilities.
If patricide (Polyneikes) is true, then hasSon (Iokaste, Polyneikes)∧patricide (Polyneikes)∧hasSon (Polyneikes, Thersandros)∧

¬patricide (Thersandros) .
If patricide (Polyneikes) is false, then hasSon (Iokaste,Oedipus)∧patricide (Oedipus)∧hasSon (Oedipus, Polyneikes)∧

¬patricide (Thersandros) .

9.4.4 Modeling with Description Logics

It is hard to build good ontologies using description logics, because the names of the classes are irrelevant, classes
are overlapping by default and the domain and range de�nitions are axioms, not constraints. In addition, we
need to cope with the open world assumption and the non-unique name assumption, i.e., the same concept
might be instantiated with two di�erent names or IDs in the knowledge base5.

10 Ontology Web Language (OWL)

OWL is a W3C recommendation, based on OIL and DAML, and using RDF and XML as the underlying
representation. There were three languages in OWL 1.0: Lite, DL and Full; later, OWL 2.0 eliminated OWL
Lite and added three pro�les, RL, QL and EL.

5Some families, such as DL-Lite family, assume the unique name assumption.

47

10.1 OWL Axioms 10 ONTOLOGY WEB LANGUAGE (OWL)

10.1 OWL Axioms

OWL axiom DL syntax Example

subClassOf C1 ⊑ C2 Human⊑Animal⊓Biped
equivalentClass C1 ≡ C2 Man≡Human⊓Male
disjointWith C1 ⊑ ¬C2 Man⊑ ¬Female

sameIndividualAs {a1} ≡ {a2} {presBush} ≡ {G.W.Bush}
di�erentFrom {a1} ⊑ ¬{a2} {john} ⊑ ¬{peter}
subPropertyOf P1 ⊑ P2 hasDaughter⊑hasChild

equivalentProperty P1 ≡ P2 hasCost≡hasPrice
inverseOf P1 ≡ P−

2 hasChild≡hasParent−
transitiveProperty P+ ⊑ P ancestor+ ⊑ancestor
functionalProperty T ⊑ (≤ 1P) Person ⊑ (≤ 1 hasFather)

inverseFunctionalProperty T ⊑ (≤ 1P−) Citizen ⊑ (≤ 1 hasSSN−)

10.2 OWL Constructs

OWL construct DL syntax Example

intersectionOf C1 ⊓ ... ⊓ Cn Human⊓Male
unionOf C1 ⊔ ... ⊔ Cn Doctor⊔Lawyer

complementOf ¬C ¬Male
oneOf {a1} ⊔ ... ⊔ {an} {john} ⊔ {mary}

allValuesFrom ∀P.C ∀hasChild.Doctor
someValuesFrom ∃P.C ∃hasChild.Lawyer
maxCardinality (≤ nP) (≤ 1 hasChild)
minCardinality (≥ nP) (≥ 2 hasChild)

Constructs such as owl:someValuesFrom, owl:allValuesFrom, owl:minCardinality, owl:maxCardinality are
expressed using blank nodes, together with owl:Restriction by means of rei�cation.

Example 10.1. De�ning :Department ⊑ ∀:Leads.:Professor
1 _:a rdfs:subClassOf owl:Restriction

2 _:a owl:onProperty :Leads

3 _:a owl:allValuesFrom :Professor

4 :Department rdfs:subClassOf _:a

Here:

� rdfs:subClassOf owl:Restriction indicate that _:a is a complex constraint

� owl:onProperty indicates the constrained property (:Leads in this case)

� owl:allValuesFrom denotes the quali�ed constraint or cardinality

Example 10.2. De�ning :student ⊑≥ 3:RegisteredTo and :student ⊑≤ 6:RegisteredTo

1 _:a rdfs:subClassOf owl:Restriction

2 _:a owl:onProperty :RegisteredTo

3 _:a owl:minCardinality 3

4 _:b rdfs:subClassOf owl:Restriction

5 _:b owl:onProperty :RegisteredTo

6 _:b owl:maxCardinality 6

7 :Student rdfs:subClassOf _:a

8 :Student rdfs:subClassOf _:b

Example 10.3. De�ning C1 ⊑ ∃P.C
1 _:a rdfs:subClassOf owl:Restriction

2 _:a owl:onProperty :P

3 _:a owl:someValuesFrom C

4 C1 rdfs:subClassOf _:a

48

10.3 OWL Implementation 11 GRAPH-BASED VIRTUAL DATA INTEGRATION

Example 10.4. De�ning ∃ : TeachesTo. : Undergrad ⊑: Professor⊔ : Lecturer

1 _:a rdfs:subClassOf owl:Restriction

2 _:a owl:onProperty :TeachesTo

3 _:a owl:someValuesFrom :Undergrad

4 _:b owl:unionOf (:Professor ,: Lecturer)

5 _:a rdfs:subClassOf _:b

10.3 OWL Implementation

OWL uses RDF syntax, i.e., URIs and literals that conform valid triplets. It reuses some URIs from RDFS, but
the whole RDFS is not embedded in OWL. In addition, it adds new properties and classes based on description
logics and de�ned at the OWL namespace.

10.4 OWL 2.0 Pro�les

� OWL 2 EL: based in EL++, suitable for knowledge bases with large numebr of properties and classes.
The reasoning is polynomial with respect to the size of the TBOX.

� OWL 2 QL: based on DL-Lite, captures ER and UML expressive power. The reasoning is reducible to
LOGSPACE.

� OWL 2 RL: based on description logic programs, provides scalable reasoning without sacri�cing much
expressivity. The reasoning is polynomial with respect to the size of the ontology.

11 Graph-Based Virtual Data Integration

Data Integration is an area of study within data management aiming at facilitating transparent acces to a
variety of heterogeneous data sources.

There are two main ways to perform data integration:

� Physical data integration: in physical data integration, the data is integrated by explicit and real modi�-
cation and movement of the data, storing the transformed data in an integrated database.

� Virtual data integration: in this case, the approach is to encapsulate the physical data with views, with
these being those that are integrated and queried. Therefore, in virtual data integration, data remains at
the origin, and it is provided to the system transparently by means of views.

Virtual Data Integration is suitable when data sources are not under our control, and the owners require a
federation, when we do not want to move the data from where it resides, when data freshness is crucial (ETLs
run from time to time and the period between updates is called the update window), and when we want to
systematically trace all the data available within a company or organization (data provenance).

There is consensus that graph-based solutions are the way to go for data integration and governance, because
graph-based data models are richer than any other data model and can express any construct, with knowledge
graphs preferred over property graphs because they facilitate linking TBOX/ABOX with little e�ort. In addi-
tion, they allow to represent all data integration constructs with the same formalism: target schema + source
schema + mappings.

There are two main approaches to achieve data integration:

� Ontology-based data access: this is a monolithic approach, in which the TBOX is directly related to the
sources via mappings.

� Ontology-mediated queries: this approach relies on the concept of wrapper, which is a view presenting
the source data. Thus, it allows to select a subset of the data source to be exposed to the whole integration
system, allowing for security and modularity, as well as pay-as-you-go data integration, i.e., building the
integrated schema incrementally as new data sources arrive.

49

11.1 Local-As-View (LAV) Integration - Ontology-Mediated Queries (OMQ)11 GRAPH-BASED VIRTUAL DATA INTEGRATION

11.1 Local-As-View (LAV) Integration - Ontology-Mediated Queries (OMQ)

OMQ us a family of systems performing graph-based data integration with LAV (and conceptually GAV is also
possible). It is based on the well-known wrapper-mediator architecture.

To make the querying rewriting feasible, they adopt several measures:

� Exact mappings (closed-world assumption).

� Very basic reasoning capabilities: only taxonomies and domain/range inference.

11.1.1 Big Data Integration Ontology

The BDIO revisits the Data Integration framework and construcs an ontology as follows:

� It de�nes the global level, G, which is the integrated view of the data.

� It de�nes the source levels, S, which are views (wrappers) on the data sources.

� And it de�nes the mappings, M , which are the LAV mappings between G and S.

A wrapper represents a view on the source, and we can think of it as a named query over the source (a view).
Some typical assumptions made by wrappers are:

� They expose the source data in tabular format (1NF).

� A data source may generate several wrappers.

� Typically, new versions of data are considered new wrappers.

Example 11.1. A LAV Integration
First, we de�ne the global level, G:

Now, we need to expose the sources by means of wrappers. For this, we automatically bootstrap the
attributes projected by the wrappers.

For instance, let's say our data comes from three sources, Q1, Q2 and Q3:

1 Q1: ID and compute the lag ratio

2 db.getCollection('vod ').aggregate ([

3 {$project: {" VoDMonitorId ": true ,

4 "lagRatio ": {$divide: [" $waitTime", "$watchTime "]}

5 }

6 }

7)]

50

11.1 Local-As-View (LAV) Integration - Ontology-Mediated Queries (OMQ)11 GRAPH-BASED VIRTUAL DATA INTEGRATION

8

9 Q2: All attributes for tweets in English.

10

11 Q3: association target app -> monitor , feedback gathering tool

We end up with the following:

Finally, we need to de�ne the LAV mappings for the wrappers. A LAV mapping for a wrapper Q is de�ned
as M = ⟨G,S⟩ where G is a named graph and S is a set of triples of the form:

<x, owl:sameAs, y>

where <x, rdf:type, S:Attribute> and <y, rdf:type, G:Feature>.
In our example, we can de�ne the LAV mapping for the wrappers for source Q1:

1 -- First we define G, the named graph

2 Q1 S:provides {

3 sup:InfoMonitor G:hasFeature sup:lagRatio .

4 sup:VoDMonitor sup:generatesQoS sup:InfoMonitor .

5 sup:VoDMonitor G:hasFeature sup:idMonitor

6 }

7

8 -- Now we define S, the "same as" triples

9 q1:lagRatio owl:sameAs sup:lagRatio

10 q1:VoDMonitorId owl:sameAs sup:idMonitor

For source Q2:

1 Q2 S:provides {

2 sup:FeedbackGatheringTool sup:generatesOpinion duv:UserFeedback .

3 sup:FeedbackGatheringTool G:hasFeature sup:idFGTool .

4 duv:UserFeedback G:hasFeature dct:description

5 }

6

7 q2:feedbackGatheringId owl:sameAs sup:idFGTool

8 q2:tweet owl:sameAs dct:description

51

11.2 Query Answering - Rewriting Algorithm 11 GRAPH-BASED VIRTUAL DATA INTEGRATION

And for source Q3:

1 Q3 S:provides {

2 sc:SoftwareApplication sup:hasMonitor sup:VoDMonitor .

3 sc:SoftwareApplication sup:hasFGTool sup:FeedbackGatheringTool .

4 sc:SoftwareApplication G:hasFeature sup:idSoftApp .

5 sup:VoDMonitor G:hasFeature sup:idMonitor .

6 sup:FeedbackGatheringTool G:hasFeature sup:idFGTool

7 }

8

9 q3:MonitorId owl:sameAs sup:idMonitor

10 q3:TargetApp owl:sameAs sup:idSoftApp

11 q3:FeedbackId owl:sameAs sup:idFGTool

And we end up with the following integrated view of the data:

11.2 Query Answering - Rewriting Algorithm

Any SPARQL query on the global graph must be rewritten as a query in terms of the wrappers, which provide
the way to access the actual data.

For example, assume the following SPARQL query:

1 SELECT ?w, ?t WHERE

2 ?t rdf:type sup:lagRatio .

3 ?x G:hasFeature ?t .

4 ?x rdf:type sup:InfoMonitor .

5 ?y sup:generatedQoS ?x .

6 ?y rdf:type sup:VoDMonitor .

7 ?z sup:hasMonitor ?y .

8 ?z rdf:type sc:SoftwareApp .

9 ?z G:hasFeature ?w .

10 ?w rdf:type sup:idSoftwareApp .

52

11.2 Query Answering - Rewriting Algorithm 11 GRAPH-BASED VIRTUAL DATA INTEGRATION

11 FILTER ?w = "SUPERSEDE"

We start from terminal features. In this case, sup:lagRatio which maps to q1:lagRatio:

Πt (ρq1:lagRatio→t (Q1)) ,

then, we go up the ontology, reaching sup:InfoMonitor. The query does not change at this point because this is
schema information covered by Q1. We continue going up, until sup:VoDMonitor, and the query still remains
the same. Now, we reach sc:SoftwareApplication, which is not covered by Q1, but by Q3. Therefore, we need
to join them somehow. Q1 and Q3 share sup:idMonitor, so we join them using this attribute:

Πt (ρq1:lagRatio→t (σq1:V oDMonitorId=q3:MonitorId (Q1×Q3))) ,

we continue reading the query, reaching sup:idSoftwareApp, which is another feature that needs to be added to
the query:

Πw,t (ρq1:lagRatio→tρq3:targetApp→w (σq1:V oDMonitorId=q3:MonitorId (Q1×Q3))) ,

�nally, we have to apply the �lter

σw=”SUPERSEDE” (Πw,t (ρq1:lagRatio→tρq3:targetApp→w (σq1:V oDMonitorId=q3:MonitorId (Q1×Q3)))) .

11.2.1 Computational Complexity

This query rewriting algorithm is linear in the size of the subgraph of G to navigate, linear in the size of the
wrappers mappings and exponential in the number of wrappers that may join. The good thing is that evidence
shows that typically BigData sources have few join points and therefore the exponential complexity is a�ordable
in real cases.

53

REFERENCES REFERENCES

References

[1] Óscar Romero and Anna Queralt. Semantic data management. Lecture Notes.

54

	I Property Graphs
	Property Graphs
	Definitions
	Traversal Navigation
	Graph operations
	Topological queries

	Property Graph Patterns
	Evaluating graph patterns
	Semantics of a match

	Graph Query Languages
	Types of queries
	Popular languages
	Cypher
	GQL

	Graph Processing
	Dijkstra's algorithm
	Pattern Matching
	Complex Graph Processing
	Graph Metrics
	Graph Processing Pipelines
	Graph Embeddings

	Graph Databases
	Implementation of Graph Databases
	Incidence Lists
	Adjacency Lists
	Incidence Matrix
	Adjacency matrix

	Types of Graph Databases

	Distributed Graph Processing
	Distributed Graph Storage
	TLAV Frameworks
	Synchronized TLAV
	TLAV: Graph Distribution
	Deepening into TLAV

	II Knowledge Graphs
	Introduction to Knowledge Graphs
	Resource Description Format (RDF)
	RDF Modeling
	RDF-star

	RDF Schema (RDFS)
	RDFS statements at the schema level
	RDFS Core Classes
	RDFS Inference
	RDFS Core Properties
	SPARQL
	Entailment Regimes

	RDFS Inference Rules
	The RDFS Paradox

	Ontology Languages: Description Logics
	Logic Based Ontology Languages
	TBOX
	ABOX
	Models of a Description Logics Ontology
	TBOX Reasoning
	Reasoning complexity
	Ontology Reasoning
	Modeling with Description Logics

	Ontology Web Language (OWL)
	OWL Axioms
	OWL Constructs
	OWL Implementation
	OWL 2.0 Profiles

	Graph-Based Virtual Data Integration
	Local-As-View (LAV) Integration - Ontology-Mediated Queries (OMQ)
	Big Data Integration Ontology

	Query Answering - Rewriting Algorithm
	Computational Complexity

