
Paper Implementation: Fine-tune BERT for
Extractive Summarization [1]

An open source implementation for the course Machine Learning of the Master’s Degree BDMA at Université Paris-Saclay, CentraleSupélec

Jose Antonio Lorencio Abril
BDMA Student

Université Paris-Saclay, CentraleSupélec
Paris, France

jose-antonio.lorencio-abril@student-cs.fr

Sayyor Yusupov
BDMA Student

Université Paris-Saclay, CentraleSupélec
Paris, France

sayyor.yusupov@student-cs.fr

Professor Tom Dupuis
CEA List

Université Paris-Saclay
Paris, France

tom.dupuis@centralesupelec.fr

Abstract—Summarization is a popular NLP task, since the
ability to summarize a text is inherently human and important
for text understanding. Here, we present a clear explanation
and implementation of BERTSUM, which leverages the great
language understanding of BERT to perform extractive sum-
maries, i.e., recognizing the most relevant sentences of a given
text. In addition, we present a way to process texts longer than
the maximum length that BERT can process (512 tokens). For
instance, this report is summarized by our tool as:

’The second approach, take N sents, involved extracting the
best N summary sentences from each chunk and joining them
together. ROUGE-2: measures the overlap of bigrams (two-word
sequences) between the generated text, and the reference text.
The tokens are converted to an embedding space. There are two
approaches for this task: extractive and abstractive summariza-
tion. Summarization is a popular NLP task, since the ability to
summarize a text is inherently human and important for text
understanding.’

Index Terms—NLP, Machine Learning, Summarization, BERT,
Transformer

I. INTRODUCTION

In the evolving landscape of Natural Language Processing
(NLP), the ability to succinctly summarize textual information
has become increasingly paramount. With the exponential
growth of digital content, the necessity for automated summa-
rization systems that can distill essential information efficiently
and accurately is more pronounced than ever. This project
explores the domain of text summarization through the lens
of one of the most revolutionary models in NLP: BERT
(Bidirectional Encoder Representations from Transformers),
specifically its adaptation for extractive summarization, known
as BERTSUM.

Our study is based in the understanding that summarization
is not just a mere truncation of text but an intricate process of
identifying and extracting relevant information. The primary
objective of this project is to implement and analyze the
BERTSUM model, delving into its unique ability to leverage
the contextual prowess of BERT for the purpose of extrac-
tive summarization. We aim to demonstrate how BERTSUM
extends the capabilities of the original BERT model, making

it appropriate for identifying key sentences in a text, thereby
generating coherent and concise summaries.

To achieve this, we first provide a comprehensive overview
of the underlying principles of BERT and its architectural
nuances, setting the foundation for understanding its exten-
sion, BERTSUM. We then delve into the specifics of the
BERTSUM model, including its architectural modifications
and the rationale behind these changes. Our exploration is
grounded in practical application, utilizing diverse datasets to
train and evaluate the model, and employing standard metrics
like ROUGE scores for assessment. Through this project,
we seek not only to demonstrate the technical efficacy of
BERTSUM but also to contribute to it by providing a more
accessible implementation12.

II. TEXT SUMMARIZATION

Text summarization is the task of summarizing the important
information of an input text, into a shorter, more concise
text. There are two approaches for this task: extractive and
abstractive summarization.

A. Extractive Summarization

Extractive summarization consists of selecting the most
important sentences of an input text, i.e., those sentences that
provide more information about the overall message of the
text.

For example, for the input sequence Jose: Hi, there. All
good? Sayyor: Indeed., we could summarize it extractively
with just one sentence as All good?, capturing that the text is
a greeting.

This task can be understood as a classification task, where
each sentence in the text is assigned a logit representing the
likelihood of the sentence being included in the summary.
More precisely, given a text composed of sentences, T =
(s1, ..., sm) ∈ T , where T is the space of input texts and m

1The original implementation is very low level and hard to follow at some
points.

2Our implementation is accessible from
https://github.com/Lorenc1o/NLP Paper Summarizer

https://github.com/Lorenc1o/NLP_Paper_Summarizer

is the amount of sentences in the text (variable for each text),
we train a model, M , that assigns a logit to each sentence,
M (s1, ..., sm) = (o1, ..., om), with oi ∈ [0, 1].

It is in this task that we focus in this project.

B. Abstractive Summarization
Abstractive summarization consists on creating a new text

from an input text, in such a way that information is mostly
preserved and length is reduced.

Following the previous example, an abstractive summary
could be Jose is greeting Sayyor.

This is a generative task, which lies out of the scope of this
project. However, the model we present can be extended to
also perform this complex task [2].

III. BERT
Bidirectional Encoder Representations from Transformers

(BERT) [3] is an NLP model developed by Google and which
set the ground for many encoder-only transformer architec-
tures. The main capability of the model is understanding the
context of a word in a sentence using information from both
directions. Its architecture is shown in Figure 1, where we
observe how:

• Input text needs to be tokenized. Usually, adding the
special tokens [CLS] at the beginning and [SEP] to
separate two sentences for the task of Next Sentence
Prediction (NSP).

• The tokens are converted to an embedding space. In the
beginning, this is just the index of each token in the
dictionary.

• Segment embeddings are added. If a [SEP] token is
detected, the segment finishes.

• Positional embeddings are added, to take positional in-
formation into account.

• A Transformer Encoder model processes this input.
• The output consists of 768-dimensional vectors, one for

each input token. These vectors represents the contextual
meaning of each input token, taking the rest into account.

BERT was pre-trained for mainly two tasks:
• Masked Language Modeling (MLM): a percentage of

the input sequence is masked out, and the model tries
to predict the original value of these tokens. This pre-
training task lets BERT learn the bidirectional contextual
information.

• Next Sequence Prediction (NSP): BERT is presented
with two sentences and has to understand whether the
second sentence is a logical follow-up of the first one.
This pre-training task lets BERT better understand the
relationships between different sentences.

It is thanks to these two tasks, and especially leveraging
NSP, that BERT can be fine-tuned for extractive summariza-
tion.

IV. BERTSUM
BERTSUM is the main attraction of this project, which was

presented in [1], as an extension of BERT, designed to enable
extractive summarization.

Fig. 1: BERT Architecture

A. BERTSUM Architecture

The new architecture can be observed in Figure 2. The main
additions are the following:

• All sentences (and not just two) are separated with
a [SEP] token. The idea is to enforce the model to
add different segment embeddings to each sentence (EA

for odd sentences3 and EB for even sentences). This
reinforces the contextual information by differentiating
adjacent sentences.

• A [CLS] token is added at the beginning of each
sentence. This is done to add an artificial token to each
sentence, giving freedom for the model to learn how to
leverage these at the time of fine-tuning. Each [CLS]
token serves as a representative token for its associated
sentences, and these are, in fact, the only tokens taken
into account at the time of classification.

3Counting from 1!

• A binary classifier module is added after BERT process-
ing of the input, to assign the likelihood of belonging
to the summary to each sentence, represented by its
associated [CLS] token.

At the end, the N [CLS] tokens with higher logits would be
selected to define the extractive summary.

Fig. 2: BERTSUM Architecture

B. The Binary Classifier

The added classifier can be any binary classifier. We test a
simple linear classifier and, more interestingly, an encoder-
only transformer, which can leverage the contextual informa-
tion to arrive to better conclusions than the bare linear clas-
sifier. Both approaches are shown in Figure 3, where we can
observe how the linear classifier processes each sentence token

(a) Linear classifier

(b) Encoder-only Transformer classifier

Fig. 3: The different binary classifiers

independently, while the transformer classifier can process all
of them at once, leveraging the power of transformers to use
self-attention matrices to take all the sentence tokens into
account for the classification task. In both cases, we normalize
with a sigmoid function to create the output logits.

V. DATASETS AND EVALUATION METRICS

A. Datasets

We use two datasets for this project:

• Dialogsum [4]: a set of dialogues between two persons,
with an associated (abstractive) summary. The dialogues
are short, mostly under the maximum token length for
BERT (512 tokens).

• arxiv-summarization [5]: a set of research papers from
arxiv, with the paper full text and its abstract. The papers
are long, exceeding several times the maximum token
length for BERT. The original dataset contains around
215 thousand articles, but we are training on only 12
thousand of them, due to computational limitations.

B. Evaluation Metrics

The ROUGE score (Recall-Oriented Understudy for Gist-
ing Evaluation) is a set of metrics used to evaluate automatic
summarization of texts, in comparison to reference summaries.
These metrics focus on the recall of the generated text. From
this family of metrics, we utilize:

• ROUGE-1: measures the overlap of unigrams (single
words) between the generated text, and the reference text.

• ROUGE-2: measures the overlap of bigrams (two-word
sequences) between the generated text, and the reference
text.

• ROUGE-Lsum: ROUGE-L finds the longest common
subsequence between the generated and reference texts.
ROUGE-Lsum is a variant of this, which aims at the
sentence level. It’s like applying ROUGE-L to each
sentence individually, instead of to the whole text. The
scores for all sentences are averaged at the end of the
process.

These three metrics were selected because they are widely
used to assess summarization tasks.

C. Generating Extractive Summaries from Abstractive Sum-
maries

Since we want to tackle the problem as a classification task,
we need to prepare our datasets for this purpose. With this in
mind, and following the approach of the original BERTSUM
implementation, we use the given abstractive summaries to
generate extractive summaries with a greedy approach that
takes the n sentences in the text that maximize the ROUGE
score when compared to the original abstractive summary. The
pseudocode can be read in Listing 1.

1function generate_oracle_summary(text: str,
summ: str, n:int):

2sent = split in sentences(text)
3oracle = []
4for i in 1:n:
5scores = [rouge(s, summ) for s in sent

]
6selected = select s with higher score
7oracle.append(selected)
8end for
9

10return oracle
11end function

Listing 1: Pseudocode for generating extractive summaries.

In the case of very long texts (e.g. arxiv−summarization
dataset), we have to consider the limitation of 512 tokens for
BERT. There are two possible approaches: increase n or chunk
into smaller pieces and compute the oracle summary for each
chunk. We opt for the latter option. We explain this approach
in more detail as follows.

D. Dealing with Long Texts

During the training phase, we chunk the long text into
smaller pieces and regard each chunk as an individual data
instance. The pseudocode can be found in Listing 2. In our

executions, min n tokens were set at 200, to remove too small
chunks that are usually the last ones. Thus, the resulting
chunks were in the range of 200 and 512. We obtained
an average of 16.7 chunks per article. We then generated
extractive summaries for each chunk as mentioned above. We
selected 3 summary sentences for each chunk.

1function split_into_chunks(text: str,
max_n_tokens: int, min_n_tokens: int):

2sents = split in sentences(text)
3initialize a new chunk
4sum_tokens = 0
5for sent in sents:
6sent_tokens = count number of tokens

in sent + 2
7sum_tokens += sent_tokens
8chunk.append(sent)
9if sum_tokens >= max_n_tokens:
10initialize a new chunk
11elif sum_tokens <= min_n_tokens:
12skip this chunk # too short for

summary
13end for
14end function

Listing 2: Pseudocode for generating extractive summaries.

To predict the full article’s summary from the predicted
summaries of each chunk, we implemented 2 approaches. The
first approach, sum of sums, involved running BERTSUM
again on the summaries of all chunks, that are joined together.
The second approach, take N sents, involved extracting the
best N summary sentences from each chunk and joining them
together. The two approaches are compared in Section VII.

VI. TRAINING

Training is performed with the following configuration:
• Optimizer: Adam with weight decay fix, with starting

learning rate lr = 10−5.
• Epochs: we train for 100 epochs. However, we noticed

how most improvement is obtained in the earlier stages of
training, so we also train with just 10 epochs, to compare
the results. In contrast, the authors of BERTSUM trained
for 50000 epochs. Maybe further gains are obtained at
latter stages in the process, but we don’t have access to
such computing power.

• Batch size: 32.
• Loss function: binary cross-entropy. Each [CLS] token,

representing its corresponding sentence, is given a logit
value, z ∈ [0, 1], with 1 meaning the sentence should be
included in the summary, and 0 meaning it should not.

• Weights initialization:
– BERT weights are the pre-trained weights.
– Classifier weights are initialized randomly.

At the time of training, the classifier is trained from scratch,
and BERT is fine-tuned for the given task. The expected
behavior is that BERT uses the inserted [CLS] tokens as a
tabula rasa, i.e., a place where it can put the newly learned
information through the training process. This means that, at
the beginning, the [CLS] tokens will not have a meaning.

However, when training goes on, BERT will understand that
putting the sentence information in these tokens enables the
classifier to better classify these tokens as belonging to the
summary or not.

We train six different models, belonging to two variants:
• BERTSUM-Dialog: trained on 12460 training instances,

with 500 validation instances and 1500 test instances.
Both using the linear and transformer classifier are trained
for 10 and 100 epochs.

• BERTSUM-Arxiv: trained on around 167000 training
instances, with 16700 validation instances and 16700 test
instances. These instances, article chunks, were obtained
from 10000 training, 1000 validation, and 1000 test
articles. Both using the linear and transformer classifiers
are trained for 10 epochs.

The evolution of the loss for each training configuration is
shown in Figure 4.

We can make several observations:
• Training with DialogSum data seems to provide most

gains at the beginning, with steady improvement in the
training data but a stagnation for the validation data.

• Training with Arxiv data, however, seems to show steady
improvement for both training and validation datasets
when using the linear model. This is not as clear as the
transformer model. However, computational restrictions
did not allow us to perform longer trainings.

• The BCE-Loss with the transformer model is much lower
than with the linear model, around 10 times lower.

VII. EXPERIMENTS AND RESULTS

Exp. A. With each of the models, we process its respective test
set with it. In addition, we process the test set on which
it was not trained on. Notice that in this experiment, the
arxiv-dataset is processed as shorter, chunked texts, as
obtained from the preprocessing of data. The objective is
to assess the generalization capabilities of each model,
both in data similar to the one the model was trained
on, and in different data. Therefore, we evaluate in
two different levels of abstraction the generalization
capabilities of the models.

Exp. B. In addition, with each of the models, we process the
arxiv papers completely, without preprocessing. Each of
the models runs with the two strategies for longer texts,
to assess which strategy works better.

For each (input,output) pair, we compute the ROUGE scores
as explained in Subsection V-B, and in the end we average
these on the full test set. The results are shown in Table I for
Experiment A, or visually for each training dataset in Figure 5,
and Table II for Experiment B or visually for each predictive
strategy in Figure 6.

We also predicted summaries for our datasets using another
BERT-based extractive summarizer [6] for comparison. The
model creates word embeddings using BERT and uses K-
means to find central sentences. It is accessible online as a
python library [7]. The model could be directly on long texts

so none of the predictive strategies were used. Additionally, we
implemented our sum of sums strategy to see if it performs
better with less text inputted. We used the same values as
the original implementation for the parameters max n tokens,
min n tokens and number of sentences for chunk summaries.

From experiment Exp. A. we can draw the following
observations:

• Models trained on the DialogueSum dataset generalize
better to unseen data.

• The transformer model performs better in the Arxiv
dataset.

• The linear model performs better in the DialogueSum
dataset.

• The transformer model, when trained for 100 epochs on
the DialogueSum dataset, obtains very poor results in this
test set.

• An interesting observation: the linear model trained on
DialogueSum for 100 epochs obtains better results in the
Arxiv data than the linear model trained on the Arxiv
data.

• Regarding the baseline model, we observe how it per-
forms better than our models in the chunked Arxiv
dataset, which is expected since this model was trained
for summarizing lectures, which are somewhat more sim-
ilar to scientific articles than to dialogues. Note, however,
that some of our models perform better in DialogueSum
data.

Regarding experiment Exp. B., we can see that:
• There is a 20% or more decrease in performance from

chunks dataset, expected as processing longer texts is a
harder task.

• Usually take N sents is slightly better.
• Arxiv-trained models perform best, but not much differ-

ence even though the data is also from the Arxiv dataset.
This reinforces our belief that training with DialogSum
data leads to better generalization capabilities.

• Transformer models not trained on the data perform
slightly worse than the rest. This can be due to the
Transformer model needing more epochs to train. Further
tests should be performed to draw conclusions on this
matter.

• Several of our models perform almost as well as the
baseline model in all metrics, which shows that we
could obtain decent results with a small number of data.
Understandably, the sum of sums approach performed
slighter worse than the one predicted on the full text
as information on the relationship between chunks is
missing, however it is not a high difference.

VIII. CONCLUSION

We have been able to provide a thorough explanation of how
BERT can be leveraged to perform extractive summarization,
as well as an implementation from scratch, which can be easily
understood and used. We have shown how our implementation
can obtain decent results with limited computing resources,

A
rx

iv

D
ia

lo
gS

um
(1

0
ep

oc
hs

)
D

ia
lo

gS
um

(1
00

ep
oc

hs
)

Linear Transformer

Fig. 4: BCE-Loss evolution during training and validation

(a) Performance of the Models on Arxiv Chunks (b) Performance of the Models on DialogueSum Testing Dataset

Fig. 5: Experiment Exp. A. results

(a) Performance on full arxiv texts, with sum of sums strategy (b) Performance on full arxiv texts, with take N sents strategy

Fig. 6: Experiment Exp. B. results

Trained Dataset
epochs

Model Type Testing Dataset ROUGE-1 ROUGE-2 ROUGE-Lsum

Arxiv
10 epochs Linear

Chunks 0.434 0.293 0.346

DialogeSum 0.179 0.118 0.148

Transformer

Chunks 0.437 0.301 0.349

DialogueSum 0.186 0.122 0.141

DialogueSum
10 epochs Linear

DialogueSum 0.420 0.294 0.325

Chunks 0.439 0.298 0.348

Transformer

DialogueSum 0.375 0.244 0.294

Chunks 0.438 0.295 0.349

DialogueSum
100 epochs Linear

DialogueSum 0.409 0.282 0.318

Chunks 0.436 0.296 0.347

Transformer

DialogueSum 0.139 0.068 0.114

Chunks 0.424 0.287 0.363

- BERT-extractive-summarizer [6]
DialogueSum 0.411 0.290 0.374

Chunks 0.491 0.351 0.429

TABLE I: Results of our 6 models and a baseline model on the 2 testing datasets.

and even obtained comparable results to popular models in
the context of extractive summarization.

REFERENCES

1. Liu, Y. Fine-tune BERT for Extractive Summarization.
Vol. 2019.

2. Liu, Y. & Lapata, M. Text Summarization with Pretrained
Encoders. Vol. 2019.

3. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K.
BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding. Vol. 2019.

4. Chen, Y., Liu, Y., Chen, L. & Zhang, Y. DialogSum: A
Real-Life Scenario Dialogue Summarization Dataset In
Proc. of the. Findings of the Association for Computa-
tional Linguistics: ACL-IJCNLP 2021 5062–5074. 2021.

5. Cohan, A. et al. A Discourse-Aware Attention Model for
Abstractive Summarization of Long Documents In Proc.
of the. Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 2
(Short Papers) 615–621. 2018.

6. Miller, D. Leveraging BERT for Extractive Text Summa-
rization on Lectures. Vol. 2019.

7. bert-extractive-summarizer https://pypi.org/project/bert-
extractive-summarizer (2022).

https://pypi.org/project/bert-extractive-summarizer
https://pypi.org/project/bert-extractive-summarizer

Trained Dataset
epochs

Model Type Predicting
Strategy

ROUGE-1 ROUGE-2 ROUGE-Lsum

Arxiv
10 epochs Linear

sum of sums 0.350 0.118 0.234

take N sents 0.375 0.132 0.249

Transformer

sum of sums 0.350 0.117 0.233

take N sents 0.352 0.117 0.239

DialogueSum
10 epochs Linear

sum of sums 0.345 0.110 0.227

take N sents 0.318 0.092 0.211

Transformer

sum of sums 0.340 0.108 0.227

take N sents 0.347 0.116 0.237

DialogueSum
100 epochs Linear

sum of sums 0.350 0.117 0.234

take N sents 0.331 0.099 0.221

Transformer

sum of sums 0.310 0.088 0.208

take N sents 0.338 0.106 0.230

BERT-extractive-summarizer
[6] full text 0.378 0.129 0.254

sum of sums 0.362 0.121 0.245

TABLE II: Performance of Prediction Strategies on Testing Dataset of the Whole Articles

	Introduction
	Text Summarization
	Extractive Summarization
	Abstractive Summarization

	BERT
	BERTSUM
	BERTSUM Architecture
	The Binary Classifier

	Datasets and Evaluation Metrics
	Datasets
	Evaluation Metrics
	Generating Extractive Summaries from Abstractive Summaries
	Dealing with Long Texts

	Training
	Experiments and Results
	Conclusion

