Communication-Efficient Learning of Deep Networks from Decentralized Data [1] The introduction of Federated Learning

Jose A. Lorencio Abril

Machine Learning, M2 BDMA

Université Paris-Saclay, CentraleSupélec

Fall 2023

J. A. Lorencio Abril (UPS-CS)

Federated Learning

Fall 2023

Table of Contents

Introduction

2 Related Work

Federated Algorithm Algorithm Visualization

④ Experiments and results

Experiment #1: Increasing parallelism Experiment #2: Increasing computation per client Experiment #3: Can we overoptimize on the client dataset?

5 Conclusion

- 6 The state of Federated Learning today
- Bibliography

Table of Contents

1 Introduction

- 2 Related Work
- **③** Federated Algorithm
- ④ Experiments and results
- **6** Conclusion
- **6** The state of Federated Learning today
- Bibliography

3/24

3 N 3

Google was facing the situation:

- Lot of data, distributed across many devices.
- Privacy-sensitive data.
- A ML model to be trained using these data.

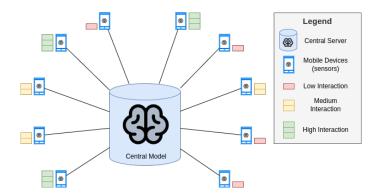
The **problem** then was:

How to train the model on the distributed data, without centralizing it, preserving its privacy?

Introduction

Moreover, contrarily to usual ML settings, the data:

- Is Not-IID: each user can show different behavior.
- Is unbalanced: each user can have different usage.



Moreover, contrarily to usual ML settings, the data:

- Is Not-IID: each user can show different behavior.
- Is unbalanced: each user can have different usage.

- Is Massively-Distributed: more devices than data points per device.
- The communication is limited (since the aim is to work with mobile devices).

Moreover, contrarily to usual ML settings, the data:

- Is Not-IID: each user can show different behavior.
- Is unbalanced: each user can have different usage.
- Is Massively-Distributed: more devices than data points per device.
- The communication is limited (since the aim is to work with mobile devices).
- So, the problem becomes:

How to train the model on massively-distributed, non-IID, unbalanced data, with limited communication, without centralizing it and preserving its privacy?

Table of Contents

Introduction

2 Related Work

- **B** Federated Algorithm
- ④ Experiments and results
- **G** Conclusion
- **6** The state of Federated Learning today
- Bibliography

э

• MacDonald et al. [2]: trained a perceptron by averaging several perceptrons, trained in different subsets of data.

- MacDonald et al. [2]: trained a perceptron by averaging several perceptrons, trained in different subsets of data.
- Povey et al. [3]: applied it to NLP tasks.

- MacDonald et al. [2]: trained a perceptron by averaging several perceptrons, trained in different subsets of data.
- Povey et al. [3]: applied it to NLP tasks.
- Zhang et al. [4]: used a similar approach to train DNNs.

- MacDonald et al. [2]: trained a perceptron by averaging several perceptrons, trained in different subsets of data.
- Povey et al. [3]: applied it to NLP tasks.
- Zhang et al. [4]: used a similar approach to train DNNs.

All this approaches considered IID and balanced data distribution across devices.

- Neverova et al. [5]: discussed the advantages of keeping user data inside their devices.
- Balcan et al. [6] and Zhang et al. [7] tackled distributed learning, assuming convexity, few devices and IID data.
- Dean et al. [8] proposed a way to do distributed SGD, but this approach is very computationally expensive.

Table of Contents

Introduction

2 Related Work

Federated Algorithm Algorithm Visualization

- ④ Experiments and results
- **6** Conclusion
- **6** The state of Federated Learning today
- Bibliography

Let C be the fraction of devices participating in each round, out of the total K devices, E the number of local SGD epochs, and B the local minibatch size.

Server executes:

- 1 Initialize w₀
- **2** For each round *t*:

(i)
$$m \leftarrow \max\{C \cdot K, 1\}$$

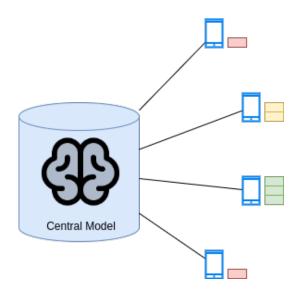
(i) $S_t \leftarrow (m \text{ random clients})$
(ii) For each client $k \in S_t$:
(i) $w_{t+1}^k \leftarrow \text{ClientUpdate}(k, w_t)$

ClientUpdate(k, w):

(b) For batch
$$b \in B$$
:

$$w \leftarrow w - \mu \nabla f_k(w, b)$$

8 Return w

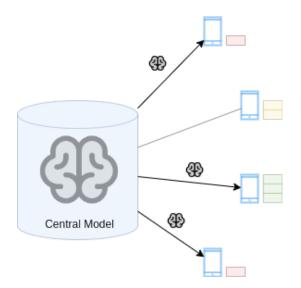


J. A. Lorencio Abril (UPS-CS)

Fall 2023

Э

◆□▶ ◆□▶ ◆□▶ ◆□▶

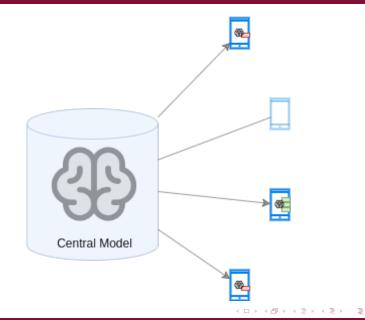


J. A. Lorencio Abril (UPS-CS)

Fall 2023

イロト イ団ト イヨト イヨト

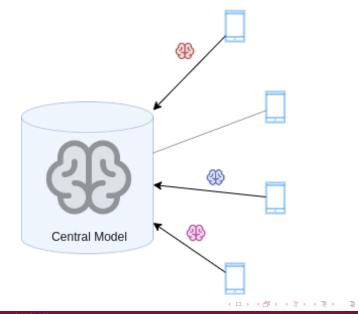
Э



J. A. Lorencio Abril (UPS-CS)

Federated Learning

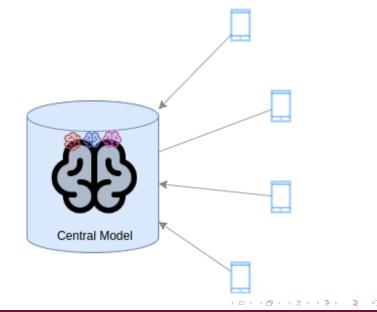
Fall 2023



J. A. Lorencio Abril (UPS-CS)

Federated Learning

Fall 2023



J. A. Lorencio Abril (UPS-CS)

Federated Learning

Fall 2023

Introduction

2 Related Work

3 Federated Algorithm

4 Experiments and results

Experiment #1: Increasing parallelism Experiment #2: Increasing computation per client Experiment #3: Can we overoptimize on the client dataset?

6 Conclusion

6 The state of Federated Learning today

Bibliography

Experiment #1: Increasing parallelism

They test the effect of varying C in the amount of needed rounds to achieve a certain accuracy.

2NN	IID		Non-IID	
С	$B=\infty$	B = 10	$B=\infty$	B = 10
0.0	1455	316	4278	3275
0.1	1474 (1.0x)	87 (3.6x)	1796 (2.4x)	664 (4.9x)
0.2	1658 (0.9x)	77 (4.1x)	1528 (2.8x)	619 (5.3x)
0.5		75 (4.2x)		443 (7.4x)
1.0		70 (4.5x)		380 (8.6x)

Conclusions:

- Increasing parallelism \implies Faster convergence.
- More noticeable in the non-IID case.

Experiment #2: Increasing computation per client

For this experiment, they fix C = 0.1, and increased the computation per client, by increasing *E* and decreasing *B*. Then, they measure the number of rounds needed to reach a certain accuracy.

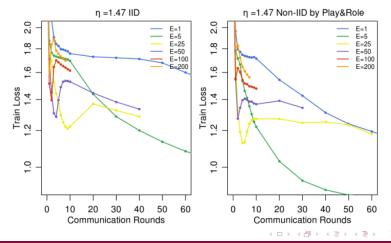
SHAKESPEARE LSTM, 54% ACCURACY					
Ε	В	IID	Non-IID		
1	∞	2488	3906		
1	50	1635 (1.5x)	549 (7.1x)		
5	∞	613 (4.1x)	597 (6.5x)		
1	10	460 (5.4x)	164 (23.8x)		
5	50	401 (6.2x)	152 (25.7x)		
5	10	192 (13.0x)	41 (95.3x)		

Conclusions:

- Increasing computation per client $\stackrel{Generally}{\Longrightarrow}$ Faster convergence.
- More pronounced when data is non-IID and unbalanced.

Experiment #3: Can we overoptimize on the client dataset?

The fixed C = 0.1 and B = 10, and varied E, measuring the overall accuracy of the model.



J. A. Lorencio Abril (UPS-CS)

Fall 2023

Experiment #3: Can we overoptimize on the client dataset?

Conclusions:

- Increasing E leads to better performance, but only up to a certain point.
- After this point, the performance can get stuck or even decrease.
- Overfitting is therefore possible.

Introduction

- 2 Related Work
- **③** Federated Algorithm
- ④ Experiments and results

6 Conclusion

- **6** The state of Federated Learning today
- Bibliography

3 N 3

In this paper, the authors defined the subfield of Federated Learning, showing that:

- It is possible to train models in a decentralized way.
- Without centralizing the data.
- With non-IID and unbalanced distributed data.
- In an efficient manner.

Introduction

- 2 Related Work
- **③** Federated Algorithm
- ④ Experiments and results
- **6** Conclusion
- 6 The state of Federated Learning today
- Bibliography

ㅋ ㅋ

- Adaptive FL [9]: adapted several optimization methods to the FL setting, like Adam, Adagrad,...
- FL with Differential Privacy [10]: enhanced the security of the approach, by adding differential privacy in the training process.
- Sparse Ternary Compression [11]: enhances the approach with a new compression approach that highly reduces communication costs.
- In general, FL shows primising results in the fields of IoT and Edge Computing.

Introduction

- 2 Related Work
- **③** Federated Algorithm
- ④ Experiments and results
- **6** Conclusion
- **6** The state of Federated Learning today
- Bibliography

22 / 24

Bibliography I

- Brendan McMahan et al. "Communication-efficient learning of deep networks from decentralized data". In: Artificial Intelligence and Statistics. PMLR. 2017, pp. 1273–1282.
- [2] Ryan McDonald, Keith Hall, and Gideon Mann. "Distributed training strategies for the structured perceptron". In: NAACL HLT. 2010.
- [3] Daniel Povey, Xiaohui Zhang, and Sanjeev Khudanpur. "Parallel training of deep neural networks with natural gradient and parameter averaging". In: ICLR Workshop Track. 2015.
- Sixin Zhang, Anna E Choromanska, and Yann LeCun. "Deep learning with elastic averaging sgd". In: NIPS. 2015.
- [5] Natalia Neverova et al. "Learning human identity from motion patterns". In: IEEE Access 4 (2016), pp. 1810–1820.
- [6] Maria-Florina Balcan et al. "Distributed learning, communication complexity and privacy". In: arXiv preprint arXiv:1204.3514 (2012).
- [7] Yuchen Zhang et al. "Information-theoretic lower bounds for distributed statistical estimation with communication constraints". In: Advances in Neural Information Processing Systems. 2013.
- [8] Jeffrey Dean et al. "Large scale distributed deep networks". In: *NIPS*. 2012.
- [9] Sashank Reddi et al. "Adaptive Federated Optimization". In: arXiv preprint arXiv:2003.00295 (2020).
- [10] Kang Wei et al. "Federated Learning With Differential Privacy: Algorithms and Performance Analysis". In: IEEE Transactions on Information Forensics and Security 15 (2020), pp. 3454–3469.

イロト イポト イヨト イヨト

[11] Felix Sattler et al. "Robust and Communication-Efficient Federated Learning From Non-i.i.d. Data". In: IEEE Transactions on Neural Networks and Learning Systems 31 (2020), pp. 3400–3413.

臣

イロト イポト イヨト イヨト