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Transformer Model

1 Introduction

Sequential data, which includes time series, images, and text, is a type of data where the order
of elements carries important information. Analyzing sequential data has been a critical task
in various fields, such as finance, healthcare, natural language processing, and computer vision.
This article provides a state-of-the-art overview of Transformers, a breakthrough deep learning
architecture for processing sequential data.

The history of sequential data analysis can be traced back to classical time series statistical
methods, such as autoregressive (AR) and moving average (MA) models, used since the mid-20th
century. With the advent of more complex data and the need for better predictive capabilities,
researchers turned to more advanced techniques, such as recurrent neural networks (RNNs),

first introduced as a learning method in [ ]. RNNs were later improved by long short-term
memory networks (LSTMs), introduced in 1997 | ], and gated recurrent units (GRUSs) in
2014 | |, with fewer parameters than LSTM and similar or improved performance than

them in some use cases. These methods were designed to capture long-range dependencies and
retain information from the past to create meaningful representations of the input data.

However, these approaches still faced limitations in capturing long-range dependencies and suf-
fered from issues like vanishing and exploding gradients, making it difficult to establish a proper
context when processing sequential data. Moreover, traditional machine learning methods were
often insufficient for handling the complexity of sequential data, leading to the rise of deep
learning techniques. Also, the deep learning approaches, leaded by recurrent models (RNNs,
LSTMs and GRUs) process the data in a sequential manner, which difficults the parallelization
of computations and, thus, the overall model performance in terms of response and training
times.

In response to these challenges, the Transformer architecture was introduced in 2017 by Google
Research team | ], revolutionizing the field of deep learning for sequential data. The
Transformer is basically an architecture that enabled the powerful concept of the self-attention
mechanism and position encoding to efficiently process and model long-range dependencies in
data. This article will delve into the inner workings of Transformers, discussing their key ad-
vancements and the impact they have had on a wide range of applications.

As we explore the world of Transformers, we will uncover the reasons behind their success and
the potential they hold for future developments in sequential data analysis. We also explain
the main developments based on the Transformer model, such as the Large Language Models
(LLMs) developed both by big technological companies and by the Open Source community,
which were in fact introduced by Google Research in 2007 | ], but have received a huge
boost thanks to the development of the Transformer.

2 The Transformer Model

The Transformer was first introduced by Google Research in the influential paper Attention Is
All You Need | |. Their major contribution was an architecture that combined previously
used constructs to improve the natural language processing top approaches at the moment,
specifically in language transduction.
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2.1 Transformer Model Architecture

The Transformer model architecture, which is depicted using the original diagram in Figure 1,
consisted in the following constructs:

e Encoder-decoder stacks: encoders are built with a multi-head attention layer and a fully-
connected feed forward network, while decoders add a third component, which is another
multi-head attention layer that takes as input the output of the encoder. They stacked 6
of these layers.

e The attention mechanism, implemented as a scaled dot-product between the vectors Query
Q, Key K, and Value V. The softmax function is applied to the scaled dot-product of @
and K to generate attention weights, which are then multiplied by the Value matrix V.
These vectors are projected to different sub-spaces, to leverage the multi-head attention
mechanism. They used a total of 8 heads (i.e. projections). This process is depicted in
Figure 2. The Query vector (Q) represents the part of the input sequence that we are
focusing at a given moment, the Key vector (K) holds information about where we could
find terms related to @. Finally, V' is the part of the input sequence in which we want to
find these related terms. For example, in text processing, V could be the text previous
to the currently processing word(s). Notice that these three vectors are trained during
training time, focusing on the task at hand. The multi-head attention implies that several
of these vectors are used in parallel, enabling for different tuples @, K,V in each of the
heads.

¢ Position-wise Feed-Forward Network: inside the encoder and the decoder, they used a
FFEN applied to each position separately and identically. The chosen function used was
the composition of two linear functions L1, Lo and a ReLU activation function ReLU in
the form L1 o ReLuo L.

e Embeddings and Softmax: the approach for converting text into an embedding space
was already widely used as neural networks require numerical inputs. They applied a
learned softmax activation function to convert the decoder output into predicted next-
token probabilities.

e Positional Encoding: it is noticeable that the Transformer does not have recurrence nor
convolution, and so to leverage the sequential nature of the data, a positional encoding is
added to the input embeddings to provide information about the position of each token
in the sequence. The positional encoding consists of sinusoidal functions with different
frequencies based on each token’s position in the input string, allowing the model to learn
and use relative position information.

Among all these constructs, the most critical is the self-attention mechanism, since they proved
that a self-attention layer connects all positions in the input with a constant number of sequential
operations, while a recurrent layer requires O(n) such sequential operations. They also noted
that self-attention layers are faster than recurrent layers when the input length is smaller than
the embedding space’s dimension. For larger input, they propose to analyze the input in batches
of appropriate length, so effectively the Transformer has a ’context’ of the dimension of the used
embedding space at most. They also assert that the self-attention mechanism provides an
inherent interpretability tool, since the weights of these layers could be used to check in which
tokens the model is basing its output more strongly, which had been explored before in other
applications of attention mechanisms, explained in Section 4.2.
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Figure 1: Transformer model architecture

Source: | ]

2.2 Training and Results

The authors conducted training experiments using two types of models: base models and big
models. The base models were trained for 12 hours, while the big models were trained for around
84 hours. They used the Adam optimizer with specific hyperparameters and a computed learning
rate. Several regularization techniques were employed, including residual dropout applied to
output sublayers, embeddings, and positional encoding in both encoder and decoder stacks,
as well as label smoothing. The big transformer model achieved impressive results on the
WMT 2014 English-to-German and English-to-French translation tasks, outperforming previous
models by a significant margin. These findings led to increased attention and further exploration
of the Transformer model by the research community.

3 Research Areas

The advent of the Transformer architecture has inspired a multitude of researchers to explore
novel methods for enhancing and refining this model. These approaches typically involve im-
provements or modifications to the Transformer, often overlapping and intersecting with each
other. Nevertheless, [ | classifies the research endeavors pertaining to the Transformer
into four primary directions':

e Module-level improvements: This line of research concentrates on enhancing and modifying
the Transformer in one or more of its individual components (such as multi-head attention,
feed-forward neural networks, positional encoding, add and normalization layers).

e Architecture-level improvements: This area of investigation focuses on high-level improve-

With a friendly explanation in [ ].
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ments to the model, encompassing aspects like architecture modifications, recurrence and
hierarchy, and adaptive computation time.

e Pretrained models: The evolution of transformers can also be studied by the lens of their
implementation categories, including encoder-only, decoder-only, or encoder-decoder mod-
els.

e Applications: Finally, an interesting approach is to go through the research by their
application use-case, such as text, vision, audio, multi-modal, etc. Please note that this
approach will commonly apply some of the previously mentioned categories to a particular
domain.

In this study we will review the state-of-the-art advancements in these fields, diving deeper into
module-level improvements and pretrained models, particularly in the context of NLP, with a
whole new tendency in the market with Large Language Models.

4 Module-Level Improvements

As outlined before, this line of research focuses on the improvement of the different compo-
nents of the model. Therefore, we are going to delve into the advances conducted for these
components, based partially in | ]. We focus in the advancements with regards to the
attention mechanism, which can be considered the most important and differential module in
the Transformer.

4.1 Attention

Self-attention could be considered as the core component of the model, since it is the component
that allows the model to have memory to remember the past of the input sequence. This makes it
a bottleneck when dealing with long sequences, since it then forces the model to perform several
scans over the sequence, with appropriate context length. Not only this, but the vanilla self-
attention mechanism is ’structure agnostic’, in the sense that it does not assume any structural
bias in the data. This kind of information need to be learnt at training time, making the model
prone to overfit in small datasets. The Self-Attention mechanism, as we explained before, is
achieved through a process like the one depicted in Figure 2.

softmax( Tf ) = H_H

Figure 2: Vanilla Self-Attention Mechanism

Source: | ]

The improvements for this mechanism have been done in different ways. In this paper, we
deepen into sparse attention, linearized attention, query prototyping and memory compression,
but other types of modifications to this module exist, from which we can highlight the low-rank
self-attention, which replaces the attention matrix by a low-rank approximation; the attention
with prior, which combines learnt attention vectors with some pre-defined attention 'prior distri-
bution’, thus introducing bias into the model through our beliefs about how attention works in
each case; and the improved multi-head mechanism, which focuses on enhancing the multi-head




Transformer Model 4.1 Attention

mechanism by ensuring that each of the heads does indeed capture different information for
attention.

e Sparse attention: based in the observation that attention matrices are usually very sparse
across most data points | |, this approach tries to introduce a structural bias to
reduce the complexity of the attention matrix. Instead of computing the attention matrix
through the previously explained process, we just define a structure that make this process
easier, i.e., we define the attention matrix as

P {Qi . K]T if token ¢ attends to token 7,
/Z:hj =

—00 if token i does not attend to token j.

Sparse attentions has basically two perspectives:

— Position-based: this approach tries to simplify the attention matrix by using pre-
defined patterns, which can be atomic, when they are directly detected, or composed,
which are combinations of other patterns.

There exist basically five kinds of atomic patterns, depicted in Figure 3, which are
the following:

1. Global attention: global nodes are added, so that attention is focused in these
instead of in the full sequence. Each of this nodes are allowed to attend to the
entirety of the sequence.

2. Band attention: attention is restricted to neighbouring parts of the sequence,
similarly to a sliding window.

3. Dilated attention: a variation of band attention, in which nodes can attend to a
diladed window with gaps. This can increase the width of the attention, while
keeping the complexity still.

4. Random attention: attention edges are sampled randomly.

5. Block local attention: the input sequence is divided into blocks, and attention is
only done at the block level.

As for sparse patterns, they usually involve more than one of the atomic patterns,
depicted in Figure 4. These are:

1. Star-Transformer [ |: combines band attention and global attention, where
pairs of non-adjacent nodes are connected through a single global node, and
neighbouring nodes are directly connected.

2. Longformer | ]: combines band attention, block local global attention and
some band attention heads in upper layers of the model are replaced by diladed
attention, to augment the perception field.

3. Extended Transformer Construction (ETC) | |: combines band attention
and global attention, together with a masked mechanism.

4. BigBird [ ]: adds random attention to the ETC to approximate a full-
input attention.
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4.1 Attention

Figure 3: Atomic patterns for sparse position-based attention.
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Not only this, but some attention mechanisms have been developed for specific

datatypes. Among these, we highlight the BP-Transformer | | and the Fourier
Sparse Attention for Transformer (FSAT) | ] for text data; and the Image Trans-
former | | and Axial Transformer [ | for images.

— Content-based: this research line tries to perform attention by means of a sparse
graph built using the input content. The Routing Transformer | | uses a k-
means approach to cluster the queries and keys, so that queries only attend to those
keys lying in the same cluster. The Reformer | | selects key-value pairs by
means of LSH, i.e., a hashing scheme that makes use of locality. There is a bucket
for each query, and the query only attends to those key-value pairs that are hashed
into its bucket. Sparse Adaptive Connection [ | trains a LSTM network using
reinforcement learning to construct attention edges between tokens. Sparse Sinkhorn
Attention [ | uses a sorting network with Sinkhorn normalization to assigned
previously grouped of queries and keys between them. The Energon | | uses a
mix-precision multiround filtering to dynamically identify which key-value pairs are
important at runtime.

o Linearized Attention: in [ | the authors developed a new formulation for the at-
tention, which enabled to create an iterative implementation that speeds the computation
of the attention matrix up from O(n?) to O(n). This method is based in an alternative
formulation, using a linear dot-product and making use of the associativity of matrix prod-
ucts, by applying a function ¢(z) to @ and K and changing the operators order. This idea
is depicted in Figure 5.

Vanilla attention Linear attention

Figure 5: Linearizing attention.

There are alternative and innovative approaches for linearizing the computation of the
attention, which we summarize in Table 1.

Method Main Idea Reference
Performer / Selects random orthogonal features,

Random Feature obtaining an unbiased estimator of [ ]
Attention the attention. [ ]

Train a second network that learns how

Fast Weight our model computes its weight. The [ |

P . . .
rogrammers second model uses lightweight operations.
Introduced the concept of Momentum, that
Momentum .
enables to compute the attention in a [ ]
Transformer .
Gradient Descent manner.
Interpret attention as a flow of information
Flowformer [ ]

and leverage the flow conservation property.

Table 1: Alternative approaches for linearized attention.
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Class Method Main Idea Reference
Clustered Attention Cluster queries, compute [ ]
Mechanism attention between centroids.

Attend only to top-K queries, [ ]
according to a metric.

Refine previously computed

Query RACP prototypes based on [ ]

ProbSparse Attention

Prototyping an attention score.
Take into account the time
Trajectory Attention dimension in video [ ]
transformers.
Memory Compressed  Use a convolution kernel to [ ]
Attention summarize key-value pairs.
t | trainable nod
Set Transformer/Luna Use ex eria’ ratiablie Hodes [ ]
for summarization. [ ]
Use linear projection to
Memory .
. Linformer reduce keys and values [ ]
Compression . . .
dimensionality.
Uses max pooling and
Poolingformer convolution for decreasing [ ]

the amount of keys and pairs.

Uses a dynamic sliding window
LFEformer that changes its size based on | ]

the embedded network layers.

Table 2: Query Prototyping and Memory Compression.

¢ Query Prototyping and Memory Compression: query prototyping refers to reducing the
number of queries, while memory compression is the reduction of key-value pairs. Both
approaches aim at reducing the complexity of the attention mechanism. The basic idea for
each method is depicted in Figure 6. In Table 2, we summarize the principal approaches
in this line of research.

Ko K. Ki ... Ky Kun Vo Vi W&o ... Vi Vi

n
5| Ki | K3
o Vi Vo Vg Wn
Qo Qo
— Ky K Ky ... Ky, Kn
Q1 @&

@ Apply Q; Apply
Attention Adtention

Qn-1 Qn-1

Qv QN

Figure 6: Query prototyping (left) and Memory Compression (right).

4.2 Interpretability

As we outlined in Section 2, the authors claimed that the multi-head attention mechanism
provides inherently a simple way to interpret which parts of the input is the model using for
creating the output. This had been explored before in | ]. This approach, however, is quite
basic, and several studies have developed more complex interpretability schemes for Transformer
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based models. For example, in | |, they used the attention weights to extract dependency
relations between the different representations of the encoders, which enabled them to conclude
that lower layers tend to learn more about the syntax of the language, while the higher layers
tend to learn more about the semantics.

Later, in [ | a more advanced approach was introduced, in which they assessed the impor-
tance of each head in each encoder layer leveraging the approach proposed in | ] to later
characterize each head’s roles as positional, syntactic and rare-words-focus. Then, they pruned
heads using a regularization approach. They found out that most heads are not important for
translations tasks, important heads have one or more specialized and interpretable functions in
the model, and these functions correspond to attention to neighbouring words and to tokens in
specific syntactic relationships.

More recently, in | |, the researchers developed an advanced technique for determining
which parts of an image were used by a Transformer-based computer vision (Vision Transformers,
which were introduced in | ]) model to classify the image. Their method assigns local

relevance based on the Deep Taylor Decomposition principle and then propagates these relevancy
scores through the layers of the model, obtaining clear and consistent visualizations, as well as
state-of-the-art results in some segmentation metrics, and also on the Movie Reviews reasoning
task | l.

5 Pretrained Models

As mentioned in | ], in recent years, the question of finding and refining techniques to
train deep learning models with relatively short datasets has posed a challenge for researchers.
The prevalent approach in contemporary studies involves the utilization of pretrained models, as
they offer a cost-effective and versatile framework for diverse applications. A pretrained model
represents a machine learning model that has undergone prior training with a broader objective
than the target task. The primary benefit of employing such models lies in their capacity for
fine-tuning to cater to specific tasks, thereby endowing them with both domain-specific and
general-purpose contexts. For instance, ImageNet has become the standard pretraining dataset

repository for computer vision tasks | ]. As a prominent case, the natural language
processing domain has highly benefited from this approach, and we can trace their use on
the Transformer with its precursor, the Word2Vec algorithm | ]. Particularly, the term

Large Language Model® has been coined to refer to the families of models used for natural
language representation trained on a big enough corpus®, independently of their use of the
Transformer architecture or not. However, as we will see, the current state-of-the-art models
use this approach.

The birth of the Transformer quickly brought three main variations to the table, each of these
with different applications and goals: encoder-only, decoder-only, and encoder-decoder models.
It’s worth noting that the popularity of the Transformer architecture has made it difficult to
keep track of the vast amount of new variations on the models, but the work in | | and
[ | does a great contribution at addressing all these family trees in a structured manner.

2 ] already define LLMs in terms of using neural networks, and the size of parameter and corpus data.
3There is no agreed upon threshold for classifying models as LLMs. With technological progress, most current
models can be considered LLMs due to their use of deep learning and billions of parameters. For instance, | ]

definition limited LLMs to 600M parameters at the most, yet GPT-3[ | trained with 300 billion parameters.

10
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5.1 Encoder-only models

These kind of models are not considered generative by nature, since they are omitting the
decoder part of the Transformer. They utilize the encoder to learn the context and then perform
tasks like classification. Oftentimes these kind of models are useful in cases where the context
can be bidirectional, this means that the right side of the analysed text is not masked as in

other approaches. This is the innovation used by | | with Google’s BERT, the most
representative model with these conditions. Other pretrained models inspired by BERT include
RoBERTa | |, DistillBERT | ] (a faster implementation utilizing distillation?), and
DeBERTa | |. Although it is important to remark the massive utilisation of BERT-style

models in 2020 and 2021, in recent years they have lost popularity against other families such
as GPT, which we will review as well.

5.2 Encoder-decoder models

The original vanilla Transformer from | ] proposes this architecture, taking into consid-
eration an innovative attention layer that captures important context into the model. The fact
that we also have a decoding layer makes this family of Transformers generative. This family
is commonly implemented for translation, summarization, or question answering tasks. The

most representative models from this family include BART | ] and T5 | |. How-
ever, current state-of-the-art developments have extended these ideas with models such as GLM
[ | and UL2 | ]

5.3 Decoder-only models

The benefit of having an encoding layer can be inherently expressed inside the decoder itself,
making the models that explore this idea encode the data directly in the hidden states of the
decoder. This allows for tasks like text generation and completion and is currently the most used
approach with technologies such as the famous GPT subfamily, which originated with the work
from | ]. The current state-of-the-art models include GPT-4 | ], LLaMA | ],
and Bard, a lightweight version of the original LaMDA | ]

6 Final Discussion

Transformer models are a booming technology, and ever since the release of | | in 2017
we have observed a massive interest from both academia and industry in this area. This can
be exemplified with platforms like ChatGPT or HuggingFace. Transformer models are a rev-
olutionary technology and we personally think that they are marking a new era in Machine
Learning. The architectural and structural variations that we have discussed in this paper are
only a fraction of all the possible research areas that have awaken the interest of the academia.
We can say that focus now is both in improving model performance while at the same time re-
ducing costs of training. This is undelving interesting model variations and techniques, however
all based on the same original idea: Transformers.

The technologies developed under this architecture are evolving at such a fast rate that it
is difficult to distinguish between state-of-the-art and already obsolete approaches. This poses
significant opportunities as well as threats. On one side, we can observe that the democratization

4This approach uses a “master” model’s output as input to a "student” model. This saves computation time
as the student is able to capture most of the information from the original, with labels generated by the master
LLM. The most recent improvements include the work from [ ].

11
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of Machine Learning and Artificial Intelligence is underway, which will be beneficial in the long
term. However, we cannot put aside the fact that many of the advancements proposed will
require formal research and approval by the community, which can be hard to achieve with so
many variations appearing day by day. In our opinion, this is an exciting time to truly delve
into the research of such an amazing topic.

12
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