About me

Quantitative researcher with dual BSc in Mathematics & Computer Science, an EMJMD MSc in Big Data (GPA: 18.5/20, Best Record Award), and hands-on experience building Python/C++ models for time-series forecasting, federated learning, and adversarial robustness.

Currently pivoting full-time into quantitative finance.

Education

Year Degree / Institution Highlights
2022‑24 EMJMD MSc Big Data Management & Analytics
ULB 🇧🇪 • UPC 🇪🇸 • CentraleSupélec 🇫🇷
GPA 18.5/20 • Best Academic Record
EMJMD Scholarship (3% success rate)
2017‑22 Double BSc Mathematics & Computer Science
University of Murcia 🇪🇸
9.7/10 Maths thesis (Willmore Surfaces)
9.9/10 CS thesis (Finite‑Element breast model)
Honour Mention to Academic Excellence
2018‑ BSc Economics (part‑time)
UNED 🇪🇸
80 % complete — pursued for personal interest

Experience

Research Engineer — Télécom Paris, Institut Polytechnique de Paris (2024–25)

Adversarial Robustness of Deep Learning Models

Research Engineer & Master’s Thesis — AIT Austria (2024)

Vertical Federated Learning for Mobility

Graduate Researcher — Université Libre de Bruxelles (2023)

Dynamic Airspace Sectorization

Data Science Intern — Grupo Orenes (2022)

Casino slot‑machine demand forecasting

Research Assistant — University of Murcia (2021‑22)

Finite‑Element breast‑tissue simulation (C++/deal.II) → thesis score 9.9/10 (honours).


Languages

Language Level
Spanish Native
English C1
French B2 (and improving)
Catalan A2

Skills

Programming   Python, C/C++, SQL, Java, C#, MATLAB
Quant / ML   Time‑series, Stochastic Processes, Monte‑Carlo, PyTorch, scikit‑learn
Big‑Data / DevOps   Spark, Hadoop, Airflow, Docker, AWS
Databases   PostgreSQL, MongoDB, Neo4j, Oracle
Tools   Git, Linux, LaTeX


Interests


Contact

📧 joseantoniolorencio@gmail.com
💼 https://www.linkedin.com/in/lorencio-abril/
Code & research: https://github.com/Lorenc1o